Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:03:49.125Z Has data issue: false hasContentIssue false

Modelling and Measurements of Stress-Controlled Interdiffusion in Multilayered Amorphous Alloys

Published online by Cambridge University Press:  21 February 2011

F. L. Yang
Affiliation:
University of Cambridge, Department of Materials Science & Metallurgy, Pembroke Street, Cambridge CB2 3QZ, United Kingdom
W. C. Shih
Affiliation:
University of Cambridge, Department of Materials Science & Metallurgy, Pembroke Street, Cambridge CB2 3QZ, United Kingdom
A. L. Greer
Affiliation:
University of Cambridge, Department of Materials Science & Metallurgy, Pembroke Street, Cambridge CB2 3QZ, United Kingdom
Get access

Abstract

The decay of X-ray satellite intensities is used to measure interdiffusion in amorphous Ni55Zr45 multilayers as a function of repeat distance, time and temperature. The data are compared to analytical expressions and a numerical simulation based on the analysis of Stephenson for stress effects. It is concluded that stress effects are very strong and that the analysis fits them quantitatively in a system such as a-Ni-Zr with marked diffusional asymmetry.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Philofsky, E.M. and Hillard, J.E., J. Appl. Phys. 40, 2198 (1969).Google Scholar
2. Prokes, S.M. and Wang, K.L., Appl. Phys. Lett. 56, 2628 (1990).Google Scholar
3. Prokes, S.M., Glembocki, O.J. and Godbey, D.J., Appl. Phys. Lett. 60, 1087 (1992).Google Scholar
4. Wonnell, S.K., Delaye, J.M., Bibolé, M. and Limoge, Y., J. Appl. Phys. 72, 5195 (1992).Google Scholar
5. Stephenson, G.B., Acta Metall. 36, 2663 (1988).Google Scholar
6. Atzmon, M. and Spaepen, F., Mater. Res. Soc. Symp. Proc. 80, 55 (1987).Google Scholar
7. Greer, A.L., Karpe, N. and Bøttiger, J., J. Alloys Compounds 194, 199 (1993).Google Scholar
8. Hoshino, K., Averback, R.S., Hahn, H. and Rothman, S.J., J. Mater. Res. 3, 55 (1988).Google Scholar
9. Hahn, H. and Averback, R.S., Phys. Rev. B 37, 6533 (1988).Google Scholar
10. Greer, A.L., Dyrbye, K., Aaen Andersen, L.-U., Somekh, R.E., Bøttiger, J. and Janting, J., Mater. Res. Soc. Symp. Proc. 187, 3 (1991).Google Scholar
11. Karpe, N., Krog, J.P., Bøttiger, J., Chechenin, N.G., Somekh, R.E. and Greer, A.L., Acta Metall. Mater, in press.Google Scholar
12. Altounian, Z. and Strom-Olsen, J.O., Phys. Rev. B 27, 4149 (1983).Google Scholar
13. Russew, K., Sommer, F., Duhaj, P. and Bakonyi, I., J. Mater. Sci. 27, 3565 (1992).Google Scholar
14. Cochrane, R.W., Destry, J., Amrani, E., Altounian, Z. and Strom-Olsen, J.O., in Rapidly Quenched Metals V, edited by Steeb, S. and Warlimont, H. (North-Holland, Amsterdam, 1985) Vol. l, p. 1083.Google Scholar
15. Darken, L.S., Trans. AIME, 175, 184 (1948).Google Scholar
16. Cooper, A.R., J. Non-Cryst. Solids 14, 65 (1974).Google Scholar
17. Stephenson, G.B., Defect and Diffusion Forum 9598, 507 (1993).Google Scholar
18. Patankar, S.V., Numerical Heat Transfer and Fluid Flow, (Hemisphere, New York, 1980).Google Scholar
19. Somekh, R.E. and Barber, Z.H., J. Phys. E: Sci. Instrum. 21, 1029 (1988).Google Scholar
20. Greer, A.L., in Proc. 4th Int. Workshop on Non-Crystalline Solids, Madrid, Sept. 1994, edited by Vazquez, M. and Hernando, A. (World Scientific, Singapore), in press.Google Scholar
21. Yang, F.L., Chang, C.S., Somekh, R.E. and Greer, A.L., to be published.Google Scholar
22. Vieregge, K., Herzig, Chr. and Lojkowski, W., Scripta Metall. Mater. 25, 1707 (1991).Google Scholar
23. Rätzke, K. and Faupel, F., Phys. Rev. B 45, 7459 (1992).Google Scholar
24. Faupel, F., Hüppe, P.W. and Rätzke, K., Phys. Rev. Lett. 65, 1219 (1990).Google Scholar
25. Greer, A.L., Ann. Rev. Mater. Sci. 17, 219 (1987).Google Scholar