Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T15:44:00.013Z Has data issue: false hasContentIssue false

Modeling Threading Dislocation Loop Nucleation and Evolution in MeV Boron Implanted Silicon

Published online by Cambridge University Press:  21 March 2011

Ibrahim Avci
Affiliation:
Swamp Center, Department of Electrical Engineering, NEB Room # 535, University of Florida, Gainesville FL 32601
Craig Jasper
Affiliation:
Motorola, Digital DNA Laboratories, Mesa, AZ 85202.
Get access

Abstract

A single statistical point defect based model for the nucleation and evolution of dislocation loops during annealing in Si is developed. The model assumes that the radius and the density of dislocation loops follow a log normal distribution. The loop nucleation part of the model also assumes that all the loops come from {311} unfaulting. The model is verified with the experimental results obtained by studying the formation of dislocation loops and threading dislocation loops as a function of implant condition in boron implanted silicon by varying the dose from 1×1013 to 5×1014 cm−2 at an energy of 1.5 MeV. Due to the statistical nature of the model, the threading dislocation loop density is easily obtained from simulation results. The dramatic change in the threading dislocation loop density withthe increasing implant dose is also predicted by the simulations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chason, E., Picraux, S. T., Poate, J. M., Borland, J. O., Current, M. I., Rubia, T. Diaz de la, Eaglesham, D. J., Holland, O. W., Law, M. E., Magee, C. W., Mayer, J. W., Melngailis, J., Tasch, A. F., Journal of Applied Physics, 81, 1997.Google Scholar
2. Lin, H. Y. and Ching, C. H., Nucl. Instrum. Methods Phys. Res. B 37/38, 960, 1989 Google Scholar
3. Borland, J. O. and Koelsch, R, Semicond. Sci. Technol. 36, 28, 1993.Google Scholar
4. Wang, H., Cheung, N. W., Chu, P. K., Lin, J., and Mayer, J. W., Applied Physics. Letters, 52, 1023, 1988 Google Scholar
5. Jones, K. S., Prussin, S., and Weber, E. R., Applied Physics, Vol. A 45, pp. 134, 1988 Google Scholar
6. Schreutelkamp, R. J., Custer, K. S., Liefting, J. R., Lu, W. X., and Saris, F. W., Material Sci. Rep. 6, 275, 1991 Google Scholar
7. Cheng, J. Y., Eaglesham, D. J., Jacobson, D. C., Stolk, P. A., Benton, J. L., and Poate, J. M., Journal of Applied Physics, 80, 2105, 1996.Google Scholar
8. Eaglesham, D. J., Stolk, P. A., Gossmann, H. J., and Poate, J. M., Applied Physics Letters, 65, 2305, 1994.Google Scholar
9. Washburn, J., Defects Semicond. 2,209, 1980.Google Scholar
10. Jasper, C., Jones, K. S., Data will be published later.Google Scholar
11. Jasper, C., Hoover, A., Jones, K. S., Applied Physics Letters, 75, 17, 1-3, 1999 Google Scholar
12. Obradovic, B., Wang, G., Chen, Y., Li, D., Snell, C., Tasch, A. F., UT-MARLOWE 5.0 with tomcat, 1999 Google Scholar
13. Law, M. E. and Jones, K. S., IEDM 2000, pp. 511514, 2000 Google Scholar
14. Li, J., and Jones, K. S., Applied Physics Letters, Vol. 73, No 25, pp. 37483750, 1998.Google Scholar
15. Avci, I., Rueda, H. A., Law, M. E., SISPAD 2000, pp. 210213, 2000 Google Scholar