Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:07:46.803Z Has data issue: false hasContentIssue false

Modeling the Performance of Biaxially-Textured Silicon Solar Cells

Published online by Cambridge University Press:  18 June 2014

Joel B. Li
Affiliation:
Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
Bruce M. Clemens
Affiliation:
Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
Get access

Abstract

Grain boundaries (GBs) in polycrystalline silicon (poly-Si) thin film solar cells are frequently found to be detrimental for device performance. Biaxiallytextured silicon with grains that are well-aligned in-plane and out-of-plane can possess fewer GB defects. In this work, we use TCAD Sentaurus device simulator and known experimental work to investigate and quantify the potential performance gains of biaxially-textured silicon. Simulation shows there can be performance gain from well-aligned grains when GB defects dominate carrier recombination or when grains are small. On the other hand, when intra-grain defects dominate recombination and grains are large, well-aligned grains do not lead to much performance gain. Another important result from our simulation is when intra-grain and GB defects are few, Jsc is almost independent of grain size while Voc drops with decreasing grain size.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Groves, J.R., Li, J.B., Clemens, B.M., LaSalvia, V., Hasoon, F., Branz, H.M., Teplin, C.W., Energy Environ. Sci. 5, 6905 (2012).10.1039/c2ee21097eCrossRefGoogle Scholar
Groves, J., Hayes, G., Li, J., et al. . in Amorphous and Polycrystalline Thin-Film Silicon Science and Technology, (Mater. Res. Soc. Proc. 1245, San Francisco, CA, 2010) pp. 1245–A20–06.Google Scholar
Teplin, C.W., Ginley, D.S., Branz, H.M., J Non-Cryst Solids 352, 984 (2006).10.1016/j.jnoncrysol.2006.01.024CrossRefGoogle Scholar
Wee, S.H., Cantoni, C., Fanning, T.R., Teplin, C.W., Bogorin, D.F., Bornstein, J., Bowers, K., Schroeter, P., Hasoon, F., Branz, H.M., Paranthaman, M.P., Goyal, A., Energy Environ. Sci. 5, 6052 (2012).10.1039/c2ee03350jCrossRefGoogle Scholar
Selvamanickam, V., Sambandam, S., Sundaram, A., Lee, S., Xiong, X., (Photovoltaic Specialists Conference, Philadelphia, PA, 2009) pp. 000650000654.Google Scholar
Selvamanickam, V., Sambandam, S., Sundaram, A., Wang, R., Majkic, G., (Photovoltaic Specialists Conference, Seattle, WA, 2011) pp. 003385003389.Google Scholar
Selvamanickam, V., Sambandam, S., Sundaram, A., Lee, S., Rar, A., Xiong, X., Alemu, A., Boney, C., Freundlich, A., Journal of Crystal Growth 311, 4553 (2009).10.1016/j.jcrysgro.2009.08.030CrossRefGoogle Scholar
Selvamanickam, V., Jian, C., Xiong, X., Majkic, G., Galtsyan, E., (Photovoltaic Specialists Conference, Austin, TX, 2012) pp. 002592002595.Google Scholar
Findikoglu, A.T., Choi, W., Matias, V., Holesinger, T.G., Jia, Q.X., Peterson, D.E., Adv. Mater. 17, 1527 (2005).10.1002/adma.200500040CrossRefGoogle Scholar
Choi, W., Findikoglu, A.T., Romero, M.J., Al-Jassim, M., Journal of Materials Research 22, 821 (2007).10.1557/jmr.2007.0105CrossRefGoogle Scholar
Teplin, C.W., Ginley, D.S., van Hest, M., Perkins, J.D., 2005 DOE Solar Energy Technologies Program Review Meeting, Denver, CO, 2005.Google Scholar
Edmiston, S.A., Heiser, G., Sproul, A.B., Green, M.A., J Appl Phys 80, 6783 (1996).10.1063/1.363806CrossRefGoogle Scholar
Deceglie, M.G., Kelzenberg, M.D., Atwater, H.A., (Photovoltaic Specialists Conference, Honolulu, HI, 2010) pp. 001487001490.Google Scholar
Wangperawong, A., Bent, S.F., Appl Phys Lett 98, 233106 (2011).10.1063/1.3595411CrossRefGoogle Scholar
Fujisaki, T., Yamada, A., Konagai, M., Solar Energy Materials and Solar Cells 74, 331 (2002).10.1016/S0927-0248(02)00092-2CrossRefGoogle Scholar
Kurobe, K.-I., Ishikawa, Y., Yamamoto, Y., Fuyuki, T., Matsunami, H., Solar Energy Materials and Solar Cells 65, 201 (2001).10.1016/S0927-0248(00)00096-9CrossRefGoogle Scholar
Green, M.A., Appl. Phys. A 96, 153 (2009).10.1007/s00339-009-5090-9CrossRefGoogle Scholar
Aberle, A., (World Conference on Photovoltaic Energy Conference, Waikoloa, HI, 2006) pp. 14811484.Google Scholar
Aberle, A.G., Journal of Crystal Growth 287, 386 (2006).10.1016/j.jcrysgro.2005.11.050CrossRefGoogle Scholar
Gaire, C., Clemmer, P.C., Li, H.F., Parker, T.C., Snow, P., Bhat, I., Lee, S., Wang, G.C., Lu, T.M., Journal of Crystal Growth 312, 607 (2010).10.1016/j.jcrysgro.2009.11.051CrossRefGoogle Scholar
Gaire, C., Snow, P., Chan, T.-L., Yuan, W., Riley, M., Liu, Y., Zhang, S.B., Wang, G.C., Lu, T.M., Nanotechnology 21, 445701 (2010).10.1088/0957-4484/21/44/445701CrossRefGoogle Scholar
Yuan, W., Tang, F., Li, H.F., Parker, T., LiCausi, N., Lu, T.M., Bhat, I., Wang, G.C., Lee, S., Thin Solid Films 517, 6623 (2009).10.1016/j.tsf.2009.04.052CrossRefGoogle Scholar
Li, H.F., Parker, T., Tang, F., Wang, G.C., Lu, T.M., Lee, S., Journal of Crystal Growth 310, 3610 (2008).10.1016/j.jcrysgro.2008.04.040CrossRefGoogle Scholar
Dimitriadis, C.A., Tassis, D.H., Economou, N.A., Lowe, A.J., J Appl Phys 74, 2919 (1993).10.1063/1.354648CrossRefGoogle Scholar
Yamamoto, I., Kuwano, H., Saito, Y., J Appl Phys 71, 3350 (1992).10.1063/1.350930CrossRefGoogle Scholar
Jackson, W.B., Johnson, N.M., Biegelsen, D.K., Appl Phys Lett 43, 195 (1983).10.1063/1.94278CrossRefGoogle Scholar
Baccarani, G., Ricco, B., Spadini, G.J.O.A.P., J Appl Phys 49, 5565 (1978).10.1063/1.324477CrossRefGoogle Scholar
Seto, J.Y.W., J Appl Phys 46, 5247 (1975).10.1063/1.321593CrossRefGoogle Scholar
Saito, Y., Mizushima, I., Kuwano, H., J Appl Phys 57, 2010 (1985).10.1063/1.334387CrossRefGoogle Scholar
Altermatt, P.P., Heiser, G., J Appl Phys 91, 4271 (2002).10.1063/1.1456962CrossRefGoogle Scholar
Fossum, J.G., Lindholm, F.A., IEEE Trans, . Electron Devices 27, 692 (1980).10.1109/T-ED.1980.19924CrossRefGoogle Scholar
Nelson, J., The Physics of Solar Cells, Imperial College Press, Singapore, 2010.Google Scholar
Murti, M.R., Reddy, K.V., J Appl Phys 70, 3683 (1991).10.1063/1.349217CrossRefGoogle Scholar
Hässler, C., Pensl, G., Schulz, M., Voigt, A., Strunk, H.P., Prog. Photovolt: Res. Appl. 137, 463 (1993).Google Scholar
Palm, J., Prog. Photovolt: Res. Appl. 74, 1169 (1993).Google Scholar
Yang, E.S., Poon, E., Evans, H.L., Hwang, W., Song, J.S., Wu, C.M., edited by Tang, C.C., (Laser Processing of Semiconductor Devices, 59, Los Angeles, CA, 1983) pp. 5964.10.1117/12.934955CrossRefGoogle Scholar
Pecora, A., Schillizzi, M., Tallarida, G., Fortunato, G., Reita, C., Migliorato, P., Solid-State Electronics 38, 845 (1995).10.1016/0038-1101(94)00170-KCrossRefGoogle Scholar
Choi, W., Matias, V., Lee, J.-K., Findikoglu, A.T., Appl Phys Lett 87, 152104 (2005).10.1063/1.2103405CrossRefGoogle Scholar
Dimitriadis, C.A., Solid State Commun 56, 925 (1985).10.1016/S0038-1098(85)80026-0CrossRefGoogle Scholar
Carnel, L., Gordon, I., Van Gestel, D., Beaucarne, G., Poortmans, J., Stesmans, A., J Appl Phys 100, 063702 (2006).10.1063/1.2337385CrossRefGoogle Scholar
Van Gestel, D., Romero, M.J., Gordon, I., Carnel, L., D’Haen, J., Beaucarne, G., Al-Jassim, M., Poortmans, J., Appl Phys Lett 90, 092103 (2007).10.1063/1.2709643CrossRefGoogle Scholar
Van Gestel, D., Gordon, I., Bender, H., Saurel, D., Vanacken, J., Beaucarne, G., Poortmans, J., J Appl Phys 105, 114507 (2009).10.1063/1.3117838CrossRefGoogle Scholar
Fehr, M., Simon, P., Sontheimer, T., Leendertz, C., Gorka, B., Schnegg, A., Rech, B., Lips, K., Appl Phys Lett 101, 123904 (2012).10.1063/1.4754609CrossRefGoogle Scholar