Published online by Cambridge University Press: 05 February 2014
Organic solar cells, comprised of P3HT-fullerene blends, have the potential for photovoltaic energy applications. However, there is limited understanding of the mechanical behavior of these devices, and how this behavior can be tailored for optimal organic solar cell performance and device reliability. Therefore, a recently developed computational approach that is based on a constitutive representation of semi-crystalline polymers and fullerenes is used to identify the dominant morphological and microstructural characteristics that would affect the mechanical behavior of the active layer. The predictions indicate that stress and dislocation-density accumulation in interfacial regions and tie molecules play a significant role on the overall behavior.