Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T00:22:57.122Z Has data issue: false hasContentIssue false

Modeling The Evolution of Ellipsometric Data During The Thermally Induced Pt-Silicide Formation: Activation Energies and Prefactors

Published online by Cambridge University Press:  10 February 2011

L. Ley
Affiliation:
Institute of Technical Physics, University of Erlangen, Germany
T. Stark
Affiliation:
Institute of Technical Physics, University of Erlangen, Germany
M. Hundhausen
Affiliation:
Institute of Technical Physics, University of Erlangen, Germany
H. Gruenleitner
Affiliation:
Institute for Applied Physics, University of Erlangen, Germany
Get access

Abstract

The formation of Pt silicide (PtSi) by the thermally activated reaction of a 23 nm Pt layer on Si was monitored in situ by ellipsometry. Characteristic changes in the ellipsometric angles as a function of temperature signal the approach of two reaction fronts to the surface: one belonging to the Pt/Pt2Si and the other to the Pt2Si/PtSi interface. An analysis of the evolution of the ellipsometric angles as a function of temperature for different heating rates allows the accurate determination of the average activation energies of the two reactions. From a modeling of the optical data in terms of a specific reaction model further kinetic parameters such as the reaction rate constants and the actual distribution of activation energies have been deduced.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Ley, L., Wang, Y., Nguyen, V., Fisson, S., Souche, D., Vuye, G., Rivory, J., Thin Solid Films 270, 561 (1995)10.1016/0040-6090(95)06860-0Google Scholar
2 Zhou, S.M., Hundhausen, M., Stark, T., Chen, L.Y., and Ley, L., J. Vac. Sci. Technol. A 17,44 (1999)Google Scholar
3 Chen, L.-Y., Feng, X.-W., Su, Y., Ma, H.-Z., Qian, Y.-H., Applied Optics, 33, 1299 (1994)10.1364/AO.33.001299Google Scholar
4 Lien, C.-D., Nicolet, M.-A., Lau, S.S., Thin Solid Films, 143, 63 (1986)10.1016/0040-6090(86)90147-1Google Scholar
5 Pan, J.T., Blech, I.A., Thin Solid Films, 113, 129 (1984)10.1016/0040-6090(84)90021-XGoogle Scholar
6 Pant, A.K., Murarka, S.P., Shepard, C., Lanford, W., J. Appl. Phys. 72, 1833 (1992)10.1063/1.351654Google Scholar
7 Colgan, E.G., d'Heurle, F.M., J. Appl. Phys. 79, 4087 (1996)10.1063/1.361771Google Scholar
8 Takai, H., Psaras, P.A., Tu, K.N., J. Appl. Phys. 58, 4165 (1985)10.1063/1.335548Google Scholar
9 Schmiedl, R., Demuth, V., Lahnor, P., Godehardt, H., Bodschwinna, Y., Harder, C., Hammer, L., Strunk, H.-P., Schulz, M., Heinz, K., Appl. Phys. A 62, 223 (1996)10.1007/BF01575085Google Scholar
10 Aspnes, D. E., Thin Solid Films, 89, 249 (1982)10.1016/0040-6090(82)90590-9Google Scholar