Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T08:59:36.202Z Has data issue: false hasContentIssue false

Modeling of Undercooling, Nucleation, and Multiple Phase Front Formation in Pulsed-Laser-Melted Amorphous Silicon*

Published online by Cambridge University Press:  25 February 2011

R. F. Wood
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P. O. Box X, Oak Ridge, TN 37831
G. A. Geist
Affiliation:
Engineering Physics and Mathematics Division, Oak Ridge National Laboratory, P. O. Box X, Oak Ridge, TN 37831
A. D. Solomon
Affiliation:
Engineering Physics and Mathematics Division, Oak Ridge National Laboratory, P. O. Box X, Oak Ridge, TN 37831
D. H. Lowndes
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P. O. Box X, Oak Ridge, TN 37831
G. E. Jellison Jr.
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P. O. Box X, Oak Ridge, TN 37831
Get access

Abstract

Recently available experimental data indicate that the solidification of undercooled molten silicon prepared by pulsed laser melting of amorphous silicon is a complex process. Time-resolved reflectivity and electrical conductivity measurements provide information about near-surface melting and suggest the presence of buried molten layers. Transmission electron micrographs show the formation of both fine- and large-grained polycrystalline regions if the melt front does not penetrate through the amorphous layer. We have carried out extensive calculations using a newly developed computer program based on an enthalpy formulation of the heat conduction problem. The program provides the framework for a consistent treatment of the simultaneous formation of multiple states and phase-front propagation by allowing material in each finite-difference cell to melt, undercool, nucleate, and solidify under prescribed conditions. Calculations indicate possibilities for a wide variety of solidification behavior. The new model and selected results of calculations are discussed here and comparisons with recent experimental data are made.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Research sponsored by the Division of Materials Sciences, U.S. Department of Energy under contract DE-AC05-840R21400 with Martin Marietta Energy Systems, Inc.

References

REFERENCES

1. Donovan, E. P., Spaepen, F., Turnbull, D., Poate, J. M., and Jacobson, D. C., Appl. Phys. Lett. 42, 698 (1983).Google Scholar
2. Olson, G. L., Kokorowski, S. A., Roth, J. A., and Hess, L. D., Mat. Res. Soc. Symp. Proc. 13, 141 (1983).Google Scholar
3. Thompson, M. O., Galvin, G. J., Peercy, P. S., Poate, J. M., Jacobson, D. C., Cullis, A. G., and Chew, N. G., Phys. Rev. Lett. 52, 2360 (1984).Google Scholar
4. See, e.g., Wood, R. F. and Giles, G. E., Phys. Rev. B23, 2923 (1981).Google Scholar
5. Lowndes, D. H., Wood, R. F., and Narayan, J., Phys. Rev. Lett. 52, 561 (1984).Google Scholar
6. Wood, R. F., Lowndes, D. H., and Narayan, J., Appl. Phys. Lett. 44, 770 (1984).Google Scholar
7. Lowndes, D. H., Wood, R. F., White, C. W., and Narayan, J., Mat. Res. Soc. Symp. Proc. 23, 99 (1984).Google Scholar
8. Narayan, J. and White, C. W., Appl. Phys. Lett. 44, 35 (1984).Google Scholar
9. Webber, H. C., Cullis, A. G., and Chew, N. G., Appl. Phys. Lett. 43, 669 (1983).Google Scholar
10. Goldsmid, H. J., Kaila, M. M., and Paul, G. I., Phys. Stat. Sol. (a) 76, K31 (1983).Google Scholar
11. See, for example, Carslaw, H. S. and Jaeger, J. C., "Conduction of Heat in Solids," 2nd ed. (The Clarendon Press, Oxford, 1959).Google Scholar
12. Lowndes, D. H., Jellison, G. E. Jr., Wood, R. F., Pennycook, S. J., and Carpenter, R. W., these Proceedings.Google Scholar