Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T14:58:30.693Z Has data issue: false hasContentIssue false

Modeling of the Band Gap Profile in the Intrinsic Layer of the a-SiGe:H Material: Application in Solar Cells

Published online by Cambridge University Press:  01 February 2011

Raul Jimenez Zambrano
Affiliation:
Utrecht University, Debye Institute, Physics of Devices, P. O. Box 80000, NL-3508 TA Utrecht, The Netherlands
Francisco A. Rubinelli
Affiliation:
INTEC, Universidad Nacional del Litoral, Guemes 3450, 3000, Santa Fe, Argentina
Wim M. Arnoldbik
Affiliation:
Utrecht University, Debye Institute, Fundamental Materials, P. O. Box 80000, NL-3508 TA Utrecht, The Netherlands
Jatindra K. Rath
Affiliation:
INTEC, Universidad Nacional del Litoral, Guemes 3450, 3000, Santa Fe, Argentina
Ruud E.I. Schropp
Affiliation:
Utrecht University, Debye Institute, Physics of Devices, P. O. Box 80000, NL-3508 TA Utrecht, The Netherlands
Get access

Abstract

A new band gap profile (exponential profile) for the active layer of the a-SiGe:H single junction solar cell deposited by plasma enhanced CVD (PECVD) has been designed and experimentally demonstrated. In this work we study the difference between the experimental results and the computer simulation. Using Rutherford Backscattering Spectrometry (RBS) significant differences were found between the composition profile as expected from variations in the gas phase ratio GeH4/SiH4 during the deposition and the actual Ge/Si depth profile as determined by RBS. This has important implications for the design of bandgap-graded a-SiGe:H cells. Among others, a delayed response of the plasma conditions due to the changes in the GeH4 flow is studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Guha, S., Yang, J., Pawalikiewicz, A., Glatfelter, T., Appl. Phys. Lett. 54 2330 (1989).10.1063/1.101118Google Scholar
2. Zambrano, R. Jimenez, Rubinelli, F.A., Rath, J.K., Schropp, R.E.I., to be published in Journal of Non-Crystalline Solids.Google Scholar
3. Lundszien, D., Finger, F., Wagner, H., Proc. 16th E.C. PVSEC, Glasgow, U.K. (2000)Google Scholar
4. Maruyama, E., Hishikawa, Y., Terakawa, A., Sayama, K., Ninomiya, K., Hishikawa, Y., Taurui, H., Tsuda, S., Nakano, S. Kuwano, Y., Mat. Res. Soc. Symp. Proc. 297 821 (1993).10.1557/PROC-297-821Google Scholar
5. Tesmer, J. R. and Nastasi, M., Handbook of Modern Ion Beam Materials Analysis MRS, Pittsburgh (1995).Google Scholar
6. Rubinelli, F.A., Zambrano, R. Jimenez, Rath, J.K., Schropp, R.E.I., J. Appl. Phys. 91 (4), 24092416 (2002).10.1063/1.1435416Google Scholar
7. Powel, M.J., Deane, S.C. Phys. Rev. B 48 10815 (1993).10.1103/PhysRevB.48.10815Google Scholar
8. Powel, M.J., Deane, S.C. Phys. Rev. B 53 10121 (1996).10.1103/PhysRevB.53.10121Google Scholar