Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:58:24.432Z Has data issue: false hasContentIssue false

Modeling of Supramolecular Systems, Mechanically Docked to Carbon Nanotubes

Published online by Cambridge University Press:  01 February 2011

Jordan Poler
Affiliation:
[email protected], UNC Charlotte, Chemistry, 9201 University City Blvd., Charlotte, NC, 28223, United States, 704 687 3064, 704 687 3151
T. D. DuBois
Affiliation:
[email protected], UNC Charlotte, Chemistry, 9201 University City Blvd., Charlotte, NC, 28223, United States
Get access

Abstract

Carbon nanotubes and nanowires are important materials for new nanotechnology devices and sensors. Future optoelectronic devices can be made from assemblies of nanostructured materials. One difficulty in preparing these assemblies from nanotubes is the lack of site-specific points of contact and the subsequent compliance of the linkage between nanoparticles. Using molecular mechanics, semiempirical and dynamics calculations, we have modeled the assembly process of two-dimensional and three-dimensional structures of carbon nanotubes. The linkers between the nanotubes consist of novel metallodendrimers. These dendrimers have multiple binding sites with chemically specified chirality. Most importantly, they are mechanically rigid. This enables the multidimensional constraints and geometry, required for advanced electronic and optoelectronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. MacDonnell, F. M.; Kim, M. J.; Bodige, S. Coordination Chemistry Reviews, 186, 535, 1999.Google Scholar
2. , Kim, Mahn-Jong, , , MacDonnell, Frederick, M., , Gimon-Kinsel, Mary, E., Thomas, DuBois, , Asgharain, , Griener, James, C., “Global Chirality in Rigid Decametallic Ruthenium Dendrimers,” Angew. Chem. Int. Ed., 39, 615, 2000.Google Scholar
3.Spartan'04, Wavefunction, Inc., Irvine, CA: Except for molecular mechanics and semi-empirical models, the calculation methods used in Spartan'04 have been documented in: Kong, J., White, C.A., Krylov, A.I., Sherrill, C.D., Adamson, R.D., Furlani, T.R., Lee, M.S., Lee, A.M., Gwaltney, S.R., Adams, T.R., Ochsenfeld, C., Gilbert, A.T.B., Kedziora, G.S., Rassolov, V.A., Maurice, D.R., Nair, N., Shao, Y., Besley, N.A., Maslen, P.E., Dombroski, J.P., Daschel, H., Zhang, W., Korambath, P.P., Baker, J., Byrd, E.F.C., Voorhis, T. Van, Oumi, M., Hirata, S., Hsu, C.-P., Ishikawa, N., Florian, J., Warshel, A., Johnson, B.G., Gill, P.M.W., Head-Gordon, M., and Pople, J.A., J. Computational Chem., 21, 1532 (2000).Google Scholar
4. , Gaussian 03, Revision C.02, Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A. Jr, Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., and Pople, J. A., Gaussian, Inc., Wallingford CT, 2004.Google Scholar
5. Odyssey, , Wavefunction, Inc., Irvine, CA.Google Scholar
6. Otsuka, T., Sekine, A., Fujigasaki, N., Ohashi, Y. and Kaizu, Y., Inorg. Chem., 40, 3406, 2001.Google Scholar
7. Ruthherford, T.J., Pellegrini, P.a., Aldrich-Wright, J., Junk, P.C., Keene, F.R., Eur. J. Inorg. Chem. 1677, 1998.Google Scholar
8. Wu, J.Z., Zhou, Z.Y., Ji, L.N., Cryst. Res. And Technol, 36, 101, 2001.Google Scholar