Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T04:14:14.910Z Has data issue: false hasContentIssue false

Modeling of Atom Diffusion and Segregation in Semiconductor Heterostructures

Published online by Cambridge University Press:  10 February 2011

Hartmut Bracht
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA University of California at Berkeley, Berkeley, CA 94720, USA
Wladek Walukiewicz
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Eugene E. Haller
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA University of California at Berkeley, Berkeley, CA 94720, USA
Get access

Abstract

We propose a new approach for modeling of impurity diffusion at semiconductor heterointerfaces. The approach is based on the notion of a common energy reference for highly localized defects. It is shown that in the kick-out process, the segregation of group II acceptors is controlled by the valence band offsets among different constituent layers of the heterostructure. Extensive numerical modeling of the diffusion provides an explanation for the experimentally observed strong segregation of Zn and Be acceptors in the lattice matched InP/InGaAs, InP/InGaAsP and GaAs/AlGaAs heterostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Walukiewicz, W., Phys. Rev. B 37, 4760 (1988).Google Scholar
[2] Walukiewicz, W., J. Vac. Sci. Technol. B5, 1062 (1987).Google Scholar
[3] Caldas, M.J., Fazzio, A., and Zunger, A., Appl. Phys. Lett. 45, 671 (1984).Google Scholar
[4] Langer, J.M. and Heinrich, H., Phys. Rev. Lett. 55, 1414 (1985).Google Scholar
[5] Yu, S., Tan, T.Y., and Gösele, U., J. Appl. Phys. 69, 3547 (1991).Google Scholar
[6] Weber, R., Paraskevopoulos, A., Schroeter-Janssen, H., and Bach, H.G., J. Electrochem. Soc. 138, 2812 (1991).Google Scholar
[7] Tiwari, S. and Frank, D.J., Appl. Phys. Lett. 60, 630 (1992).Google Scholar
[8] Panish, M.B., Hamm, R.A., Rifter, D., Luftman, H.S., and Cotell, C.M., J. Crystal Growth 112, 343 (1991).Google Scholar
[9] Haussier, W., Walter, J.W., and Müller, J., Mat. Res. Soc. Symp. Proc. 147, 333 (1989).Google Scholar
[10] Humer-Hager, T., Treichler, R., Wurzinger, P., Tews, H., and Zwicknagl, P., J. Appl. Phys. 66, 181 (1989).Google Scholar
[11] Laidig, W.D., Holonyak, N. Jr, Camras, M.D., Hess, K., Coleman, J.J., and Dapkus, P.D., Bardeen, J., Appl. Phys. Lett. 38, 776 (1981).Google Scholar
[12] Hwang, D.M., Schwarz, S.A., Mei, P., Bhat, R., Venkatesan, T., Nazar, L., and Schwartz, C.L., Appl. Phys. Lett. 54 1160 (1989).Google Scholar