Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T01:31:23.482Z Has data issue: false hasContentIssue false

Modeling of Antiphase Boundaries in L12 Structures

Published online by Cambridge University Press:  28 February 2011

J.M. Sanchez
Affiliation:
Center for Strategic Materials and Henry Krumb School of Mines Columbia University, New York, NY 10027
S. Eng
Affiliation:
Center for Strategic Materials and Henry Krumb School of Mines Columbia University, New York, NY 10027
Y.P. Wu
Affiliation:
Center for Strategic Materials and Henry Krumb School of Mines Columbia University, New York, NY 10027
J.K. Tien
Affiliation:
Center for Strategic Materials and Henry Krumb School of Mines Columbia University, New York, NY 10027
Get access

Abstract

The thermodynamic properties of conservative (111) antiphase boundaries in L12 ordered structures are modeled using the tetrahedron approximation of the cluster variation method. The concentration and long-range order parameter profiles are determined as a function of temperature and composition of the bulk alloy. Characteristic wetting transitions, with a macroscopic disordered layer growing from the antiphase boundary as the transition temperature is approached, are found for all cases investigated. The effectof antiphase boundaries on the disordering of ordered alloys and on the gliding of superdislocations are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brown, N. and Herman, M., Trans. AIME 206, 1353 (1956).Google Scholar
2. Brown, N., Phil. Mag. 4, 693 (1959).Google Scholar
3. Flinn, P.A., Trans. AIME 218, 145 (1960).Google Scholar
4. Popov, L.E., Kozlov, E. and Golosov, N.S., Phys. Stat. Sol. 13, 569 (1966).CrossRefGoogle Scholar
5. Koehler, J.S. and Seitz, F., Appl. Mech. 14A, 217 (1947).CrossRefGoogle Scholar
6. Cottrell, A.H., Relation of Properties to Microstructures, ASM Monograph, p. 131 (1954).Google Scholar
7. Kear, B.H. and Wilsdorf, H.G.F., Trans. AIME 224, 382 (1962).Google Scholar
8. Thornton, P.H., Davies, R.G. and Johnston, T.L., Met. Trans. 1, 207 (1970).CrossRefGoogle Scholar
9. Takeuchi, S. and Kuramoto, E., Acta Metall. 21, 415 (1973).CrossRefGoogle Scholar
10. Lall, C., Chin, S. and Pope, D.P., Met. Trans. A 10A, 1323 (1979).CrossRefGoogle Scholar
11. Paidar, V., Pope, D.P. and Vitek, V., Acta Metall. 32, 435 (1984).Google Scholar
12. Veyssiere, P., Phil. Mag. A 50, 189 (1984).CrossRefGoogle Scholar
13. Veyssiere, P., Donnin, J. and Beauchamps, P., Phil. Mag. A 51, 469 (1985).CrossRefGoogle Scholar
14. Yoo, M.H., Scripta Met. 20, 915 (1986).CrossRefGoogle Scholar
15. Kikuchi, R. and Cahn, J.W., Acta Metall. 27, 13237 (1979).CrossRefGoogle Scholar
16. Sanchez, J.M., Barefoot, J.R., Jarrett, R.N. and Tien, J.K., Acta Metall. 32, 1519 (1984).Google Scholar
17. Sigli, C. and Sanchez, J.M., Acta Metall. 33, 1097 (1985).CrossRefGoogle Scholar
18. Kikuchi, R., Phys. Rev. 81, 988 (1951).CrossRefGoogle Scholar
19. Mohri, T., Fontaine, D. de and Sanchez, J.M., Met. Trans. A 17A, 189 (1986).Google Scholar
20. Sanchez, J.M. and Moran-Lopez, J.L., Surf. Sci. 157, L297 (1985).CrossRefGoogle Scholar
21. Sanchez, J.M. and Moran-Lopez, J.L., Phys. Rev. B 32, 3534 (1985).CrossRefGoogle Scholar
22. Sanchez, J.M., F. Mejia-Lira and Moran-Lopez, J.L., Phys. Rev. Lett. 57, 360 (1986).Google Scholar