Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T08:57:48.233Z Has data issue: false hasContentIssue false

Modeling Ductile/Brittle Behavior in Polymeric Microlaminates: Effect of Volume Fraction

Published online by Cambridge University Press:  26 February 2011

Rajdeep Sharma
Affiliation:
[email protected], General Electric, Corporate R&D, Room K1-4B18, 1 Research Circle, Niskayuna, NY, 12309, United States, 518-387-7069
Mary C. Boyce
Affiliation:
[email protected], Massachusetts Institute of Technology, Mechanical Engineering, 77 Massachusetts Avenue, Cambridge, MA, 02139, United States
Simona Socrate
Affiliation:
[email protected], Massachusetts Institute of Technology, Mechanical Engineering, 77 Massachusetts Avenue, Cambridge, MA, 02139, United States
Get access

Abstract

In this work we present a micromechanical model for two-phase ductile/brittle laminates that captures the macroscopic behavior, as well as the underlying micro-mechanisms of deformation and failure, in particular the synergy between the inelastic deformation mechanisms of crazing and shear yielding. The finite element implementation of our model considers a three-dimensional representative volume element (RVE), and incorporates continuum-based physics-inspired descriptions of shear yielding and crazing, along with failure criteria for the ductile and brittle layers. The interface between the ductile and brittle layers is assumed to be perfectly bonded. The model successfully explains the volume fraction effect on the micro and macromechanics of ductile/brittle microlaminates subjected to uniaxial tension.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gregory, B.L., Siegmann, A., Im, J., Hiltner, A. and Baer, E., J. Mater. Sci. 22, 532 (1987).Google Scholar
2. Ma, M., Vijayan, K., Hiltner, A., Baer, E. and Im, J., J. Mater. Sci. 25, 2039 (1990).Google Scholar
3. Shin, E., Hiltner, A. and Baer, E., J. Appl. Polym. Sci., 47, 245; 47, 269 (1993).Google Scholar
4. Haderski, D., Sung, K., Hiltner, A. and Baer, E., J. Appl. Polym. Sci., 52, 121 (1994).Google Scholar
5. Sung, K., Haderski, D., Hiltner, A. and Baer, E., J. Appl. Polym. Sci., 52, 135; 52, 147 (1994).Google Scholar
6. Sung, K., Hiltner, A. and Baer, E., J. Mater. Sci., 29, 5559 (1994).Google Scholar
7. Nazarenko, S., Haderski, D., Hiltner, A. and Baer, E., Polym Engg. Sci., 35, 1682 (1995).Google Scholar
8. Hiltner, A., Ebeling, T., Shah, A., Mueller, C. and Baer, E. in Interfacial Aspects of Multicomponent Polymer Materials, edited by Lohse, D. J., Russell, T. P. and Sperling, L. H. (Plenum, New York, 1997), p. 95.Google Scholar
9. Kerns, J., Hsieh, A., Hiltner, A. and Baer, E., J. Appl. Polym. Sci., 77, 1545 (2000).Google Scholar
10. Ivan'kova, E. M., Michler, G.H., Hiltner, A. and Baer, E., Macromol. Mater. Engg., 289, 787 (2004).Google Scholar
11. Calleja, F. J. Balta, Ania, F., Orench, I. P., Baer, E., Hiltner, A., Bernal, T., and Funari, S. S., Prog. Coll. Polym. Sci., 130, 140 (2005).Google Scholar
12. Adhikari, R., Henning, S. and Michler, G.H., Macromol. Symp., 233, 26 (2006).Google Scholar
13. Sharma, R., “Micromechanics of Toughening in Polymeric Composites”, Ph.D. Thesis, Massachusetts Institute of Technology (2006).Google Scholar