Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T15:33:10.578Z Has data issue: false hasContentIssue false

Modeling Considerations for Phase Change Electronic Memory Devices

Published online by Cambridge University Press:  01 February 2011

Guy Wicker*
Affiliation:
[email protected], Ovonyx Technologies, Inc., Simulation and Modeling, 2956 Waterview Dr., Rochester Hills, MI, 48309, United States, 248-293-0440, 248-844-2359
Get access

Abstract

This paper discusses the modeling of phase change, chalcogenide alloy, electrical memory devices. Optical disk modeling, which uses the same alloys has yielded a good understanding of how the material's structural change is related to temperature, time, nucleation of crystallites, and crystal growth. From this base, models of electrical memory behavior have been developed. Modeling the complex electronic nature of the amorphous phase is discussed and suggestions for improving device performance using these models are made.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lowrey, T. et. al., MRS Symp. Proc. V. 803 HH2.1.1 (2003).Google Scholar
2. Ridley, B., Proc. Phys. Soc., v82, pp954966, (1963).Google Scholar
3. Ovshinsky, S., Phys. Rev. Lett. 21 1450 (1968).Google Scholar
4. Lyle, B., Phys. Rev., v2 #11, pp253260, (1918).Google Scholar
5. Cohen, M., Fritzsche, H., Ovshinsky, S., Phys. Rev. Lett. v22, #20, pp 10651068, (1969).Google Scholar
6. Mott, N., Contemp. Phys., v10, #2, pp125138, (1969).Google Scholar
7. Lucas, I., J. Non. Cryst. Sol., v6, pp136144, (1971).Google Scholar
8. Emin, D., Phys. Rev. Lett., v32, p303, (1974).Google Scholar
9. Kroll, D., Phys. Rev. B, v9 #4, pp16691706, Feb. (1974).Google Scholar
10. Kastner, M., Adler, D., Fritzsche, H., Phys. Rev. Lett., v37, #22, pp15041507, (1976).Google Scholar
11. Barnett, A., IBM J. Res. Dev., v13, #5, pp 522528, Sept. (1969).Google Scholar
12. Frenkel, J., Phys. Rev., v54, pp647648, (1938).Google Scholar
13. Chynoweth, A. and McKay, K., Phys. Rev. 102, 369 (1956).Google Scholar
14. Feinleib, J., deNeufville, J., Moss, S., Ovshinsky, S., Appl. Phys. Lett. 18, 254 (1971).Google Scholar
15. Rubin, K. et.al., Appl. Phys. Lett., v50, #21, pp 14881490, (1987).Google Scholar
16. Johnson, W. and Mehl, R., Trans. AIME 135, 416 (1939).Google Scholar
17. Kirkpatrick, S., Reviews of Modern Physics, v45 #4, pp574588, (1973).Google Scholar
18. Peng, C., Cheng, L., and Mansuripur, M., J. Appl. Phys. 82, 41834191 (1997).Google Scholar
19. Senkader, S. and Wright, C., J. Appl. Phys., 95, pp504511 (2004).Google Scholar
20. Wicker, G., Ph.D. Dissertation, Wayne State University, Detroit, MI (1996).Google Scholar
21. Wicker, G., SPIE vol. 3891, pp29, (Oct. 1999).Google Scholar
22. Kim, Y. et. al., JJAP, Vol. 44, No. 4B, pp. 27012705, (2005).Google Scholar
23. Lacaita, L. et. al., IEDM Tech. Dig., pp. 911914, (2004).Google Scholar