Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T15:40:58.153Z Has data issue: false hasContentIssue false

Modeling and Experiments of Dopant Diffusion and Defects for Laser annealed Junctions and advanced USJ

Published online by Cambridge University Press:  01 February 2011

Taiji Noda
Affiliation:
[email protected], Matsushita Electric Industrial Co., Ltd., Semiconductor Company, 19 Nishikujyo-Kasugacho, Minami-ku, Kyoto, 601-8413, Japan
Wilfried Vandervorst
Affiliation:
[email protected], IMEC, Kapledreef 75, Leuven, B-3001, Belgium
Susan Felch
Affiliation:
[email protected], Applied Materials, 974 E. Arques Ave. MIS 81280, Sunnyvale, CA, 94085, United States
Vijay Parihar
Affiliation:
[email protected], Applied Materials, 974 E. Arques Ave. MIS 81280, Sunnyvale, CA, 94085, United States
Christa Vrancken
Affiliation:
[email protected], IMEC, Kapledreef 75, Leuven, B-3001, Belgium
Thomas Y. Hoffmann
Affiliation:
[email protected], IMEC, Kapledreef 75, Leuven, B-3001, Belgium
Get access

Abstract

Laser annealed junctions and advanced ultra shallow junctions are studied in both atomistic modeling and experiments. SIMS and sheet resistance measurement for spike-RTA + Laser annealing show that additional laser annealing after spike-RTA (“+Laser”) improve the dopant activation level without increasing in junction depth. “+Laser” effect become effective in the combination of low spike-RTA temperature and high laser temperature. This effect is significant for As doped layer. Spike-RTA based junction has a limitation in viewpoint of Rs-Xj trade-off. Laser-only annealing is promising candidate to overcome this limitation. Boron diffusion with laser-only annealing is investigated. As atomistic kinetic Monte Carlo modeling show that BnIm complexes and End-of-Range (EOR) defects are formed during sub-millisecond annealing time range. Impact of F co-implant on Boron diffusion and EOR defect evolution during sub-millisecond annealing are also investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fung, S. K. H., et al., Symp. VLSI Tech. Dig., p. 92 (2004).Google Scholar
2. Shima, A., et al., Symp. VLSI Tech. Dig., p. 174 (2004).Google Scholar
3. Hane, M., et al., IEDM2004 (2004).Google Scholar
4..Adachi, K., et al., Symp. VLSI Tech. Dig., p. 142 (2005).Google Scholar
5. Pouydebasque, A. et al., IEDM2005, p. 663 (2005).Google Scholar
6. Noda, T., et al., IEDM2006, p. 377 (2006).Google Scholar
7. Josse, E., et al., IEDM2006, p. 693 (2006).Google Scholar
8. Severi, S., et al., IEDM2006, p. 859 (2006).Google Scholar
9. Hoffmann, T. Y., et al, IWJT2007, S83 (2007).Google Scholar
10. Noda, T., et al, IEDM2007, p. 955 (2007).Google Scholar
11. Ortolland, C., et al., VLSI2008, p. 186 (2008).Google Scholar
12. Noda, T., et al., Mat. Res. Soc. Symp. Porc. Vol. 912, 0912–C05 (2006).Google Scholar
13. Noda, T., et al., IIT2006, p. 21 (2006).Google Scholar
14. Pawlak, B., et al., Appl. Phys. Lett. 89, p. 062110 (2006).Google Scholar
15. Pawlak, B., et al., Appl. Phys. Lett. 89, p. 062101 (2006).Google Scholar
16. Colombeau, B., et al., IEDM2006, p. 381 (2006).Google Scholar
17. Jacques, J., et al., Appl. Phys. Lett., 82, p. 3469 (2003).Google Scholar
18. Duffy, R., et al., Appl. Phys. Lett. 84, p. 4283 (2004).Google Scholar
19. Noda, T., J. Appl. Phys. 96, p. 3721 (2004).Google Scholar
20. Cowern, N., et al., Appl. Phys. Lett. 86, p. 101905 (2005).Google Scholar
21. Jaraiz, M., et al., Mat.Res.Soc.Symp.Proc. 532, 43 (1998).Google Scholar
22. Noda, T., J. Appl. Phys. 94, p. 6396 (2003).Google Scholar
23. Lopez, G., et al., Phys. Rev. B 72, p. 045219 (2005).Google Scholar
24. Olson, G., et al., Mater. Sci. Rep. 3, p. 1 (1988).Google Scholar
25. Mirabella, S., et al., Appl. Phys. Lett. 86, p. 121905 (2005).Google Scholar