Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T07:43:17.300Z Has data issue: false hasContentIssue false

Model of the Semiconductor-to-Semimetal Transition Modulation at Teraherz Frequencies

Published online by Cambridge University Press:  01 January 1992

T. K. Cheng
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139
L. Acioli
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139
J. Vidal
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139
H. J. Zeiger
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139
E. P. Ippen
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139
G. Dresselhaus
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139
M. S. Dresselhaus
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139
Get access

Abstract

We present experimental data which show that large amplitude coherent lattice vibrations can be impulsively excited using short optical pulses of light. Furthermore, using a quasi-equilibrium model, we show how the these coherent lattice vibrations suggest a ~ 7 THz modulation of the semiconductor-to-metal transition in Ti2O3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 De Silvestri, S., Fujimoto, J.G., Ippen, E.P., Bamble, E.B. Jr., Williams, L.R. and Nelson, K.A., Chem. Phys. Lett. 116, 146 (1985).Google Scholar
2 Rosker, M.J., Wise, F.W. and Tang, C.L., Phys. Rev. Lett. 57, 321 (1986).Google Scholar
3 Yan, Y.X. and Nelson, K.A., J. Chem. Phys. 83, 5391 (1986); Yan, Y.X. and Nelson, K.A., J. Chem. Phys. 87, 6257 (1987).Google Scholar
4 Chesnoy, J. and Mokhtari, A., Phys. Rev A 38, 3566 (1988).Google Scholar
5 Cheng, T.K., Brorson, S.D., Kazeroonian, A.K., Moodera, J.S., Dresselhaus, G., Dresselhaus, M.S., Ippen, E.P., Appl. Phys. Lett. 57, 1004 (1990); H.J. Zeiger, Vidal, J., Cheng, T.K., Ippen, E.P., Dresselhaus, G. and Dresselhaus, M.S., Phys. Rev. B 45, 768 (1992).Google Scholar
6 Cho, G.C., Kutt, W.A. and Kurz, H., Phys. Rev. Lett. 65, 764 (1990); Kutt, W.A., Albrecht, W. and Kurz, H., J. Quant. Elect. 28, 2434 (1992).Google Scholar
7 Chwalek, J.M., Uher, C., Whitaker, J.F., Mourou, G.A. and Agostinelli, J.A., Appl. Phys. Lett. 58, 980 (1991).Google Scholar
8CPM - Fork, R. L., Greene, B. I. and Shank, C. V., Appl. Phys. Lett. 38, 671 (1981); CVL - Knox, W., Downer, M., Fork, R. and Shank, C. V. Opt. Lett. 9, 552 (1984).Google Scholar
9 Shin, S. H., Aggarwal, R.L., Lax, B., and Honig, J.M., Phys. Rev. B 9, 583 (1974).Google Scholar
10 Van Zandt, L.L., Honig, J.M. and Goodenough, J.B., J. Appl. Phys., 39, 594 (1968).Google Scholar
11 Rice, C. E. and Robinson, W. R., Acta Cryst B 33, 1342 (1977).Google Scholar