Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T07:34:19.918Z Has data issue: false hasContentIssue false

A Model of Strain Distribution in Nanocrystalline SiC and Diamond at Very High Pressures; In-Situ X-RAY Diffraction Study and Computer Modelling

Published online by Cambridge University Press:  10 February 2011

R. Pielaszek
Affiliation:
High Pressure Research Center UNIPRESS, ul.Sokolowska 29, PO Box 65, 01 142 Warsaw, Poland
B. Palosz
Affiliation:
High Pressure Research Center UNIPRESS, ul.Sokolowska 29, PO Box 65, 01 142 Warsaw, Poland
S. Gierlotka
Affiliation:
High Pressure Research Center UNIPRESS, ul.Sokolowska 29, PO Box 65, 01 142 Warsaw, Poland
S. Stel'Makh
Affiliation:
High Pressure Research Center UNIPRESS, ul.Sokolowska 29, PO Box 65, 01 142 Warsaw, Poland
U. Bismayer
Affiliation:
Mineralogisch-Petrografisches Institut, Uni Hamburg, Grindelallee 48, 20146 Hamburg, Germany
Get access

Abstract

A modeling of nanoparticles and ab initio simulation of the scattered intensity from the Debye functions is used as a tool for an examination of the strain induced under high pressure in nanocrystalline silicon carbide and diamond. The analysis of the experimental intensity profiles includes a determination of the atomic structure and microstructure of the materials. The advantages of modeling over conventional methods of the analysis of powder diffraction data are discussed. Examples of using the modeling for determination of the shape and size and of one dimensional disordering in very small particles (2-4 nm), and development of internal strains in 10 nm SiC nanocrystals subjected to high pressures are given.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bondars, B., Gierlotka, S., Palosz, B. & Smekhnov, S., Mat. Sc. Forum, 166–169, 737 (1994).Google Scholar
[2] Pielaszek, R., Aloshina, M., Palosz, B., Gierlotka, S., Stel'makh, S. and Bismayer, U. MRS Symp Proc. 501, 305310 (1998).Google Scholar
[3] Buschmann, V., Klein, S., Fuess, H. and Hahn, H., J.Cryst. Growth 193, 335 (1998)Google Scholar
[4] Martin, H.-P., Müller, E., Richter, R., Roever, G. & Brendler, E., J.Mater.Science 32, 381 (1997).Google Scholar
[5] Keil, D. G., Calcote, H. F. & Hill, R. J., Mat. Res. Soc. Symp. Proc. 410, 167 (1996)Google Scholar
[6] Stel'makh, S., PhD.Thesis, Warsaw, (1997).Google Scholar
[7] Palosz, B., Gierlotka, S., Stelmakh, S., Pielaszek, R., Zinn, P., Winzenick, M., Bismayer, U. and Boysen, H., Alloys, J. and Compounds, in pressGoogle Scholar