Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T07:33:26.839Z Has data issue: false hasContentIssue false

Model of Hydrogen-Mediated Metastable Changes in a Two-Domain Amorphous Silicon Network

Published online by Cambridge University Press:  17 March 2011

Jonathan Baugh
Affiliation:
Dept. of Physics and Astronomy, University of North Carolina at Chapel Hill Chapel Hill, NC 27599-3255
Daxing Han
Affiliation:
Dept. of Physics and Astronomy, University of North Carolina at Chapel Hill Chapel Hill, NC 27599-3255
Get access

Abstract

A phenomenological model for the light-induced metastability of a-Si:H is proposed in which a two-domain model of the amorphous network plays a central role. Boundaries between high and low density domains are associated with a significant fraction of the clustered Si-H in aSi:H. Weakly bonded hydrogen at these boundaries catalyzes metastable local configuration changes in the Si network due to non-radiative carrier recombination, leading qualitatively to both the gross structural changes and the increase in electronic defect density that are observed experimentally.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Reimer, J. A. and Petrich, M. A., in Amorphous Silicon and Related Materials, ed. Fritzche, Hellmut, pp. 327 (1988).Google Scholar
2. Carlos, W. E. and Taylor, P. C., Phys. Rev. B 26, 3605 (1982).Google Scholar
3. Wu, Yu et al. , Phys. Rev. Lett. 77, 2049 (1996).Google Scholar
4. Han, D. X., Baugh, J., Yue, G. Z. and Wang, Q., Phys. Rev. B 62, 7169 (2000).10.1103/PhysRevB.62.7169Google Scholar
5. Branz, H. M. and Silver, M., Phys. Rev. B 42, 7420 (1990).10.1103/PhysRevB.42.7420Google Scholar
6. Gibson, J. M. et al. , Appl. Phys. Lett. 73, 3093 (1998).Google Scholar
7. Reimer, J. A., Vaughn, R. W. and Knights, J. C., Phys. Rev. B 24, 3360 (1981).Google Scholar
8. Bellisent, R., in Amorphous Silicon and Related Materials, ed. Fritzche, Hellmut, pp. 93121 (1988).Google Scholar
9. Williamson, D. L. et al. , Mat. Res. Soc. Symp. Proc. Vol. 609 (2000).Google Scholar
10. Gotoh, T. et al. , Appl. Phys. Lett. 72, 2978 (1998).Google Scholar
11. Vanacek, M. et al. , Proc. of the 12th European Photovoltaic Solar Energy Conf., 354 (1994).Google Scholar
12. Fritzche, H., in Amorphous and Liquid Semiconductors, ed. Spear, W. E., p. 3 (1977).Google Scholar
13. Gleason, K. K., Petrich, M. A. and Reimer, J. A., Phys. Rev. B 36, 3259 (1987).10.1103/PhysRevB.36.3259Google Scholar
14. Menelle, A., J. Non-Cryst. Solids, 97–98, 337 (1987).Google Scholar
15. Branz, H. M., Asher, S. E. and Nelson, B. P., Phys. Rev. B 47, 7061 (1993).10.1103/PhysRevB.47.7061Google Scholar
16. Kaiser, I., Nickel, N. H., Fuhs, W., and Pilz, W., Phys. Rev. B 58, R1718 (1998).10.1103/PhysRevB.58.R1718Google Scholar
17. Stutzmann, M., Jackson, W. B., and Tsai, C. C., Phys. Rev. B 32, 23 (1985).Google Scholar
18. Fritzche, H., Mat. Res. Soc. Symp. Proc. Vol. 467 (1997).Google Scholar
19. Fritzche, H., J. Non-Cryst. Solids 59/60, 1289 (1983).Google Scholar