Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T15:21:19.693Z Has data issue: false hasContentIssue false

Model Narrow Nanotubes Related to C36, C32 and C20: Computationa Insight

Published online by Cambridge University Press:  15 March 2011

Zdeněk Slanina
Affiliation:
Institute of Chemistry, Academia Sinica 128 Yen-Chiu-Yuan Rd., Sec. 2 Nankang, Taipei 11529, Taiwan - R. O. C.
Filip Uhlík
Affiliation:
Department of Physical and Macromolecular Chemistry School of Science, Charles University Albertov 6, CZ-12843 Prague 2, Czech Republic
Get access

Abstract

Very recently, narrow nanotubes have been observed with a diameter of 5 Å and even with a diameter of 4 Å. It has been supposed that the narrow nanotubes are closed by fragments of C36 and C20 fullerenes. The contribution reports computations on related model nanotubes with stoichiometries like C84, C96 or C80. Computations are carried out at the PM3 (Parametric Method 3), SaM1 (Semi-Ab-Initio Model 1), HF/4-31G (Hartree-Fock SCF approach with the standard 4-31G basis set), and B3LYP/6-31G* (Becke's three parameter functional with the non-local Lee-Yang-Parr correlation functional using the standard 6-31G* basis set) levels, though the geometry optimizations are performed only at the semiempirical levels. Two C36 fullerenes are considered, D6h and D2d, and, for example, at the PM3 level and with the C84 nanotube stoichiometry the D2d cage closure gives a lower energy (by 185 kcal/mol and diameter of 5.42 Å). There is another possible candidate, C32 cage with a D4d symmetry. At the PM3 level and with the C96 nanotube stoichiometry the D4d closure has the nanotube enrgy lower by 210 kca/mol (with the nanotube diameter of 5.43 Å) compared to the D6h nanotube closure. On the other hand, four-membered rings should not play a significant role in the narrow nanotubes with the diameter of 4 Å, where the dodecahedron-related closure should be exclusive as a four-membered ring containing structure is located already much higher in energy.

Type
Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sun, L. F., Xie, S. S., Liu, W., Zhou, W. Y., Liu, Z. Q., Tang, D., Wang, G., and Qian, L. X., Nature 403, 384 (2000).Google Scholar
2. Qin, L. C., Zhao, X. L., Hirahara, K., Miyamoto, Y., Ando, Y., and Iijima, S., Nature 408, 50 (2000).Google Scholar
3. Wang, N., Tang, Z. K., Li, G. D., and Chen, J. S., Nature 408, 50 (2000).Google Scholar
4. Piskoti, C., Yarger, J. and Zettl, A., Nature 393, 771 (1998).Google Scholar
5. Prinzbach, H., Weller, A., Landenberger, P., Wahl, F., Worth, J., Scott, L. T., Gelmont, M., Olevano, D., and Issendorff, B. von, Nature 407, 60 (2000).Google Scholar
6. Wang, Z., Ke, X., Zhu, Z., Zhu, F., Ruan, M., Chen, H., Huang, R. and Zheng, L., Phys. Let. A 280, 351 (2001).Google Scholar
7. Slanina, Z., Uhlík, F., Zhao, X., and Osawa, E., J. Chem. Phys. 113, 4933 (2000).Google Scholar
8. Stewart, J. J. P., J. Comput. Chem. 10, 209 (1989).Google Scholar
9. Dewar, M. J. S., Jie, C. and Yu, J., Tetrahedron 49, 5003 (1993).Google Scholar
10.AMPAC 6.0, Semichem, Shavnee, KS, 1997.Google Scholar
11. Hehre, W. J., Burke, L. D. and Schusterman, A. J., SPARTAN, Release 3.1.8, Wave-function Inc., Irvin, 1993.Google Scholar
12. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Gill, P. M. W., Johnson, B. G., Robb, M. A., Cheeseman, J. R., Keith, T., Petersson, G. A., Montgomery, J. A., Raghavachari, K., Al-Laham, M. A., Zakrzewski, V. G., Ortiz, J. V., Foresman, J. B., Peng, C. Y., Ayala, P. Y., Chen, W., Wong, M. W., Andres, J. L., Replogle, E. S., Gomperts, R., Martin, R. L., Fox, D. J., Binkley, J. S., Defrees, D. J., Baker, J., Stewart, J. P., Head-Gordon, M., Gonzalez, C. and Pople, J. A., GAUSSIAN 94, Revision E. 2, Gaussian, Inc., Pittsburgh, PA, 1995.Google Scholar
13. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G., Montgomery, J. A. Jr, Stratmann, R. E., Burant, J. C., Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., strain, M. C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui, Q., Morokuma, K., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J. V., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Andres, J. L., Gonzalez, C., Head-Gordon, M., Replogle, E. S. and Pople, J. A., GAUSSIAN 98, Revision A.5, Gaussian, Inc., Pittsburgh, PA, 1998.Google Scholar
14. Zhao, X., Slanina, Z., Ozawa, M., Osawa, E., Deota, P. and Tanabe, K., Fullerene Sci. Technol. 8, 595 (2000).Google Scholar
15. Zhu, H.-Y., Klein, D. J., Seitz, W. A. and March, N. H., Inorg. Chem. 34, 1377 (1995).Google Scholar
16. Sun, M.-L., Slanina, Z. and Lee, S.-L., Chem. Phys. Lett. 233, 279 (1995).Google Scholar
17. Slanina, Z., Sun, M.-L. and Lee, S.-L., J. Mol. Struct. (THEOCHEM) 334, 229 (1995).Google Scholar
18. Rubio, A., Corkill, J. L. and Cohen, M. L., Phys. Rev. B 49, 5081 (1994).Google Scholar
19. Loiseau, A., Willaime, F., Demoncy, N., Schramchenko, N., Hug, G., Colliex, C. and Pascard, H., Carbon 36, 743 (1998).Google Scholar
20. Goldberg, D., Bando, Y., Stéphan, O. and Kurashimna, K., Appl. Phys. Lett. 73, 2441 (1998).Google Scholar
21. Cioslowski, J., Electronic Structure Calculations on Fullerenes and Their Derivatives, Oxford University Press, Oxford, 1995.Google Scholar
22. Slanina, Z. and Lee, S.-L., Fullerene Sci. Technol. 3, 151 (1995).Google Scholar
23. Schlegel, H. B. and McDouall, J. J. W., In Computational Advances in Organic Chemistry, eds. Ögretir, C. and Csizmadia, I. G., Kluwer Academic Publishers, Dordrecht, 1991, p. 167.Google Scholar
24. Saito, R., Dresselhaus, G. and Dresselhaus, M. S., Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998.Google Scholar
25. Diederich, F., Whetten, R. L., Thilgen, C., Ettl, R., Chao, I. and Alvarez, M. M., Science 254, 1768 (1991).Google Scholar
26. Kikuchi, K., Nakahara, N., Wakabayashi, T., Suzuki, S., Shiromaru, H., Miyake, Y., Saito, K., Ikemoto, I., Kainosho, M. and Achiba, Y., Nature 357, 142 (1992).Google Scholar
27. Taylor, R., Langley, G. J., Avent, A. G., Dennis, T. J. S., Kroto, H. W. and Walton, D. R. M., J. Chem. Soc., Perkins Trans. 2 1029 (1993).Google Scholar
28. Yamamoto, K., Abstract no. 1489, The 200th ECS Meeting, ECS, San Francisco, 2001.Google Scholar
29. Slanina, Z., François, J.-P., Bakowies, D. and Thiel, W., J. Mol. Struct. (Theochem) 279, 213 (1993).Google Scholar
30. Slanina, Z., Zhao, X., Deota, P. and Osawa, E., In Fullerenes: Chemistry, Physics, and Technology, eds. Kadish, K. M., Ruoff, R. S., J. Wiley, New York, 2000, p. 283.Google Scholar
31. Slanina, Z., Zhao, X., Grabuleda, X., Ozawa, M., Uhlík, F., Ivanov, P. M., Kobayashi, K. and Nagase, S., J. Mol. Graphics Mod. 19, 252 (2001).Google Scholar
32. Uhlík, F., Slanina, Z. and Osawa, E., Eur. Phys. J. D 16, 349 (2001).Google Scholar
33. Eggen, B. R., Heggie, M. I., Jungnickel, G., Latham, C. D., Jones, R. and Briddon, P. R., Science 272, 87 (1996).Google Scholar
34. Osawa, E., Slanina, Z., Honda, K. and Zhao, X., Fullerence Sci. Technol. 6, 259 (1998).Google Scholar
35. Slanina, Z., Zhao, X., Uhlík, F., Ozawa, M. and Osawa, E., J. Organomet. Chem. 599, 57 (2000).Google Scholar