Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:09:12.432Z Has data issue: false hasContentIssue false

A Model for Nematic Phases in a Reversibly Assembling System of Hard Rods and Plates

Published online by Cambridge University Press:  26 February 2011

Mark P. Taylort
Affiliation:
Departments of Chemistry, Brandeis University, Waltham, MA 02254-9110 Physics, Brandeis University, Waltham, MA 02254-9110
Alan E. Berger
Affiliation:
Applied Mathematics Branch, Naval Surface Warfare Center, Silver Spring, MD 20903-5000
Judith Herzfeld
Affiliation:
Departments of Chemistry, Brandeis University, Waltham, MA 02254-9110
Get access

Abstract

: Liquid crystalline behavior is exhibited by many amphiphilic solutions as a result of the reversible formation of anisotropic aggregates. We model such a system by combining a phenomenological description of aggregation with a lattice statistics calculation of the configurational entropy of a polydisperse collection of hard rods and plates. In this model, nematic liquid crystalline phases of axial, planar and biaxial symmetry are possible. We present a calculated phase diagram, and corresponding particle size distributions, for the case when rod and plate growth are equally favored. Regions of stability are found for axial and planar phases, but not for biaxial phases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Onsager, L., Ann. N.Y. Acad. Sci. 51, 627 (1949).CrossRefGoogle Scholar
2. Flory, P.J., Proc. R. Soc. London, Ser. A 234, 73 (1956).Google Scholar
3. Tanford, C., “The Hydrophobic Effect”, 2nd edition, Wiley, New York, (1980).Google Scholar
4. Wennerstrom, H. and Lindman, B., Physics Reports 52, 1 (1979).CrossRefGoogle Scholar
5. Tiddy, G.J.T., Physics Reports 57, 1 (1980).CrossRefGoogle Scholar
6. Fujiwara, F.Y. and Reeves, L.W., J. Phys. Chem. 84, 653 (1980).CrossRefGoogle Scholar
7. Rizzatti, M.R. and Gault, J.D., J. Colloid Interface Sci. 110, 258 (1985).Google Scholar
8. Yu, L.J. and Saupe, A., Phys. Rev. Lett. 45, 1000 (1980).Google Scholar
9. Kekicheff, P. and Cabane, B., J. Physique 48, 1571 (1987).Google Scholar
10. Israelachvili, J.N., Mitchell, D.J. and Ninham, B.W., J. Chem. Soc. Faraday Trans. 2, 72, 1525 (1976).CrossRefGoogle Scholar
11. McMullen, W.E., Ben-Shaul, A. and Gelbart, W.M., J. Colloid Interface Sci. 98, 523 (1984).CrossRefGoogle Scholar
12. McMullen, W.E., Gelbart, W.M. and Ben-Shaul, A., J. Chem. Phys. 82, 5616 (1985).Google Scholar
13. Herzfeld, J., J. Chem. Phys. 88, 2776 (1988).CrossRefGoogle Scholar
14. Herzfeld, J. and Taylor, M.P., J. Chem. Phys. 88, 2780 (1988).CrossRefGoogle Scholar
15. Taylor, M.P., Berger, A.E. and Herzfeld, J., J. Chem. Phys., submitted.Google Scholar
16. Taylor, M.P., Berger, A.E. and Herzfeld, J., Mol. Cryst. Liq. Cryst. 157, 489 (1988).Google Scholar
17. Herzfeld, J., J. Chem. Phys. 76, 4185 (1982).Google Scholar
18. Missel, P.J., Mazar, N.A., Benedek, G.B., Young, C.Y. and Carey, M.C., J. Phys. Chem. 84, 1044 (1980).Google Scholar