Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-07T12:44:06.275Z Has data issue: false hasContentIssue false

A Model for Indium Incorporation in the Growth of InGaN Films

Published online by Cambridge University Press:  10 February 2011

E. L. Piner
Affiliation:
North Carolina State University, MS&E Department, Raleigh, NC 27695
F. G. McIntosh
Affiliation:
North Carolina State University, ECE Department, Raleigh, NC 27695
J. C. Roberts
Affiliation:
North Carolina State University, ECE Department, Raleigh, NC 27695
K. S. Boutros
Affiliation:
Philips Research Laboratories, Briarcliff Manor, NY
M. E. Aumer
Affiliation:
North Carolina State University, ECE Department, Raleigh, NC 27695
V. A. Joshkin
Affiliation:
North Carolina State University, ECE Department, Raleigh, NC 27695
N.A. El-Masry
Affiliation:
North Carolina State University, MS&E Department, Raleigh, NC 27695
S.M. Bedair
Affiliation:
North Carolina State University, ECE Department, Raleigh, NC 27695
S.X. Liu
Affiliation:
North Carolina State University, ECE Department, Raleigh, NC 27695
Get access

Abstract

The development of high quality indium based III-nitride compounds is lagging behind the corresponding aluminum and gallium based compounds. Potential problems confronting the growth of epitaxial and double heterostructure InGaN will be discussed. A mass balance model is presented describing the competing reaction pathways occurring during the growth of indium containing compounds. Atomic layer epitaxy and metalorganic chemical vapor deposition grown InGaN films will be used to explain this model. Also, the growth parameters leading to the attainment of high InN percentages, reduced indium metal formation, and improved structural and optical properties of indium containing nitrides will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M., Iwana, N., and Nagahama, S., Jpn. J. Appl. Phys. 34, L797 (1995).Google Scholar
2. Nakamura, S., Senoh, M., Sagahama, S., Iwasa, N., Yamata, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Jpn. J. Appl. Phys. 35, L74 (1996).Google Scholar
3. Matsuoka, T., Tanaka, H., Sasaki, T., and Datsui, A., Inst. Phys. Conf. 106, 141 (1989).Google Scholar
4. Boutros, K. S., McIntosh, F. G., Roberts, J. C., Bedair, S. M., and El-Masry, N. A., Appl. Phys. Lett. 67, 1795 (1995).Google Scholar
5. Karam, N., Parados, T., Rowland, W., Schetzina, J., El-Masry, N., and Bedair, S. M., Appl. Phys. Lett. 67, 94 (1995).Google Scholar
6. Matsuoka, T., Yoshimoto, N., Sakaki, T., and Katsui, A., Electron, J.. Mater. 21, 157 (1992).Google Scholar
7. Arthur, J., J. Appl. Phys. 39, 4032 (1968).Google Scholar
8. Nakamura, S., Microelectron. J. 25, 651 (1994).Google Scholar
9. Seki, H., and Koukitu, A., Cryst, J.. Growth 98, 118 (1989).Google Scholar