No CrossRef data available.
Published online by Cambridge University Press: 15 March 2011
A model is presented that describes silicon nanoparticle deposition in terms of disilane decomposition on silicon dioxide, adatom diffusion, nucleation, nanoparticle growth and coalescence. Total nanoparticle densities are output as a function of time, and segregation of nanoparticles into subsets with common size allows size distributions to be reported for all times during the simulation. Model parameters are fit to low pressure chemical vapor deposition data with disilane pressures ranging from 5×10−4 to 5×10−3 Torr and surface temperatures from 510 to 570 °C. Simulations are used to explain how growth pressure and surface temperature influence incubation time, nanoparticle density and size distribution.