Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:54:41.209Z Has data issue: false hasContentIssue false

Model for Dopant and Impurity Segregation During Vapor Phase Growth

Published online by Cambridge University Press:  17 March 2011

Craig B. Arnold
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge MA 02138, USA
Michael J. Aziz
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge MA 02138, USA
Get access

Abstract

We propose a new kinetic model for surface segregation during vapor phase growth that takes into account multiple mechanisms for segregation, including mechanisms for inter-layer exchange and surface diffusion. The resulting behavior of the segregation length shows temperature and velocity dependence, both of which have been observed in experiments. We compare our analytic model to experimental measurements for segregation of Phosphorus in Si(001), and we find an excellent agreement using realistic energies and pre-exponential factors for kinetic rate constants.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schubert, E., Delta-Doping of Semiconductors (Cambridge University Press, Cambridge, 1996), p. 604.Google Scholar
2. Gossmann, H. and Schubert, E., Critical Reviews in Solid State and Materials Sciences 18, 1 (1993).Google Scholar
3. Allen, P., Solid State Comm. 102, 127 (1997).Google Scholar
4. Farrow, R., IBM J. of Res. and Dev. 42, 43 (1998).Google Scholar
5. Gossmann, H., Schubert, E., Eaglesham, D., and Cerullo, M., Appl. Phys. Lett. 57, 2440 (1990).Google Scholar
6. Iyer, S., Metzger, R., and Allen, F., J. Appl. Phys. 52, 5608 (1981).Google Scholar
7. Barnett, S. and Greene, J., Surf. Sci. 151, 67 (1985).Google Scholar
8. Harris, J., Ashenford, D., Foxon, C., Dobson, P., and Joyce, B., Appl. Phys. A 33, 87 (1984).Google Scholar
9. Jorke, H., Surf. Sci. 193, 569 (1988).Google Scholar
10. Jorke, H., Herzog, H., and Kibbel, H., Fresenius J. Anal. Chem. 341, 176 (1991).Google Scholar
11. Jiang, Z., Pei, C., Liao, L., Zhou, X., Zhang, X., Wang, X., Smith, T., and Sou, I., Thin Solid Films 336, 236 (1998).Google Scholar
12. Andrieu, S., d'Avitaya, F. A., and Pfister, J., J. Appl. Phys. 65, 2681 (1989).Google Scholar
13. Nutzel, J. and Abstreiter, G., Phys. Rev. B 53, 13551 (1996).Google Scholar
14. Aziz, M., J. Appl. Phys. 53, 1158 (1982).Google Scholar
15. Goldman, L. and Aziz, M., J. Mater. Res. 2, 524 (1987).Google Scholar
16. Arnold, C. B., Ph.D. thesis, Harvard University, Cambridge, MA, 2000.Google Scholar
17. Barabasi, A. L. and Stanley, H., Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, UK, 1995).Google Scholar
18. Krueger, M., Borovsky, B., and Ganz, E., Surf. Sci 385, 146 (1997).Google Scholar
19. Nutzel, J. and Abstreiter, G., J. Appl. Phys. 78, 937 (1995).Google Scholar