Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T15:24:16.759Z Has data issue: false hasContentIssue false

Mocvd Routes To Thin Films For Superconducting Applications. Precursor Synthesis and Film Processing Issues

Published online by Cambridge University Press:  10 February 2011

T. J. Marks
Affiliation:
Chemistry Department, [email protected]
J. A. Belot
Affiliation:
Chemistry Department, [email protected]
B. J. Hinds
Affiliation:
Chemistry Department, [email protected]
J. Chen
Affiliation:
Chemistry Department, [email protected]
D. Studebaker
Affiliation:
Chemistry Department, [email protected]
J. Lei
Affiliation:
Materials Science Department
R. P. H. Chang
Affiliation:
Materials Science Department
J. L. Schindler
Affiliation:
Electrical Engineering and Computer Science Department
C. R. Kannewurf
Affiliation:
Electrical Engineering and Computer Science Department
Get access

Abstract

Low pressure metal-organic chemical vapor deposition has been used to grow dielectric thin films of the tetragonal perovskites LaSrGaO4 and PrSrGaO4 on (110) LaAlO3 using the volatile metal sources Pr(dpm) 3, La(hfa) 3•tri, Ga(dpm) 3, and Sr(hfa) 2•tet (dpm = dipivaloylmethanate, hfa = hexafluoroacetylacetonate, tet = tetraglyme, and tri = triglyme). The PrSrGaO4, a new ternary oxide, was found to have a body-centered tetragonal lattice with a = b = 3.80 and c = 12.59 Å. Epitaxial c-axis oriented growth of these materials has been revealed by both x-ray and electron diffraction, with an average surface roughness, measured by AFM, of 1.2 nm for LaSrGaO4 and 3.0 nm for PrSrGaO4. In addition to this, the ability of these materials to function as lattice-matched buffer layers for the growth of the high temperature superconductor YBa2Cu3O7−, has been explored. The superconductive properties of the YBCO layer do not indicate any degradation attributable to the buffer layers, with the onset of superconductivity displaying a sharp metal-superconductor transition at Tc = 87.3 K and 84.5 K for the LaSrGaO4 and PrSrGaO4 systems, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Introduction to Superconductivity and High-Tc Materials, edited by Cyrot, M. and Pavuna, D. (World Scientific Publishers, Singapore, 1992).Google Scholar
2. Lee, L. P., Char, K., Coclough, M. S., Zaharchuk, G., Appl. Phys. Lett. 59, 3051, (1991).Google Scholar
3. High-Tc Microwave Superconductors and Application, edited by Hammomd, R. B. and Withers, R. S. (Proc. SPIE 2156, 1994).Google Scholar
4. Wellstood, T. C., Klingston, J. J., Clarke, J., J. Appl. Phys. 75, 683, (1994).Google Scholar
5. Miyagawa, S., Tazoli, Y., Asano, H., Nagai, Y., Michikami, O., Suzuki, M., Adv. Mater. 5, 179, (1993).Google Scholar
6. Schulz, D. L. and Marks, T. J., Adv. Mater. 6, 719, (1994).Google Scholar
7. Kodas, T. and Hampden-Smith, M., The Chemistry of Metal CVD, (VCH Publishers, Weinheim, Germany, 1994).Google Scholar
8. Sievers, R. E. and Sadlowski, J. E., Science, 201, 217, (1978).Google Scholar
9. Schulz, D. L., Hinds, B. J., Stern, C. L., Marks, T. J., Inorg. Chem. 32, 249. (1993).Google Scholar
10. a.) Bradley, D. C., Hasan, M., Hursthouse, M. B., Motevalli, M., Khan, O.F. Z., Pritchard, R. G., Williams, J. O., Chem., J. Soc. Chem. Com. 575 (1992); b.) A. A. Drozdov and S. I. Trojanov, Polyhedron, 11, 2877, (1992).Google Scholar
11. a.) Timmer, K., Spee, C. I.M. A., Mackor, A., Meinema, H. A., Spek, A. L., Sluis, P. van der, Inorg. Chim. Acta. 190, 109, (1991); b.) G. Malandrino, D. S. Richeson, T. J. Marks, D. C. Degroot, J. L. Schindler, C. R. Kannewurf, Appl. Phys. Lett. 58, 182, (1991).Google Scholar
12. Neumayer, D. A., Studebaker, D. B., Hinds, B. J., Stem, C. L., Marks, T. J., Chem. Mater. 6, 878, (1994).Google Scholar
13. Malandrino, G., Licata, R., Castelli, F., Fragala, I. L., Benelli, C., submitted for publication.Google Scholar
14. Hinds, B. J., Studebaker, D. B., Chen, J., McNeely, R. J., Han, B., Schindler, J. L., Hogan, T. P., Kannewurf, C. R., Marks, T. J., J. de Physique II, 5, C5391, (1995).Google Scholar
15. For LaA1O3 see Miyazawa, S., Appl. Phys. Lett. 55, 2230, (1989); For SrTiO3 see R. Brown, V. Pendrick, D. Kalokitis, B. H. T. Chang, Appl. Phys. Lett.57, (1990).Google Scholar
16. Han, B., Neumayer, D. A., Goodreaui, B. H., Marks, T. J. in Advances in Cryogenic Engineering, edited by Reed, R. P. et al. (Plenum Press, New York, 1994) p. 417.Google Scholar
17. a.) Efimov, A. N. and Lebedev, A. O., J. of Supercon. 6, 1, (1993); b.) S. Hontsu, J. Ishii, T. Kawai, S. Kawai, Appl. Phys. Lett. 59, 2886, (1991).Google Scholar
18. Hontsu, S., Mukai, N., Ishii, J., Kawai, T., Kawai, S., Appl. Phys. Lett. 61, 1134, (1992).Google Scholar
19. a.) Mahajan, S., Wen, J. G., Ito, W., Yoshida, Y., Kubota, N., Liu, C-J., Morishita, T., Appl. Phys. Lett. 65, 3129, (1994); b.) S. Mahajan, ISTEC, 7, 17, (1994).Google Scholar
20. Han, B., Neumayer, D. A., Goodreau, B. H., Marks, T. J., Zhang, H., Dravid, V. P., Chem. Mater., 6, 18, (1994).Google Scholar
21. a.) Takashi, Y., Matsuzaki, K., Iijima, M., Fukada, E., Tsukahara, S., Murakami, Y., A. Maesono, Jpn. J. Appl. Phys. 32, L875, (1993); b.) K. Chou and G. Tsai, Thermochimica Acta 240, 129, (1994).Google Scholar
22. JCPDS, Powder Diffraction Files-Inorganic Phases (Center for Diffraction Data, Swarthmore, PA 1994).Google Scholar
23. Nystrom, M. J., Wessels, B. W., Studebaker, D. B., Marks, T. J., Lin, W. P., Wong, G. K., Appl. Phys. Lett. 67, 365, (1995).Google Scholar
24. Buchholz, D. B., Duray, S. J., Schulz, D. L., Marks, T. J., Ketterson, J. B., Chang, R. P. H., Mater. Chem. Phys. 36, 377, (1994).Google Scholar
25. Oda, S., Yamamoto, S., Kawaguchi, A. J. de Physique II, 5, C5379, (1995).Google Scholar
26. Jensen, K. F., Adv. Chem. Ser. 221, 199, (1989).Google Scholar