Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T20:18:32.872Z Has data issue: false hasContentIssue false

The Mn effect on magnetic structure of FeMn-B amorphous metals

Published online by Cambridge University Press:  01 February 2011

Yang Wang
Affiliation:
Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, PA 15213
D. M. C. Nicholson
Affiliation:
Computational Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
M. Widom
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213
M. Fuentes-Cabrera
Affiliation:
Computational Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213
M. Mihalkovic
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213
Get access

Abstract

Fe-rich Fe-B amorphous metals exhibit approximately collinear magnetic structure. When a certain amount of Fe atoms are replaced with Mn, the magnetic structure of the alloys is found to become non-collinear. We performed electronic structure calculations using the locally self-consistent multiple scattering (LSMS) method for supercell samples generated by ab initio molecular dynamics simulation using the Vienna Ab-initio Simulation Package (VASP). We present the distribution of moment sizes and angular distributions in the FeMn-B amorphous metal samples. We discuss the Mn effect on the magnetic structure of the alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See articles in Amorphous Metallic Alloys, edited by Luborsky, F.E., (Butterworths, London, 1983).Google Scholar
2. Cahn, R.W., in Glasses and Amorphous Materials, edited by Zarzycki, J., (Mater. Sci. Tech. 9, VCH Press, Weinheim, 1991) pp. 493548.Google Scholar
3. Kui, H.W., Greer, A.L., and Turnbull, , Appl. Phys. Lett. 45, 615 (1984).Google Scholar
4. Drehman, A.J. and Greer, A.L., Acta. Metall. 32, 323 (1984).Google Scholar
5. Inoue, A., Mater. Sci. Eng. A304–306, 1 (2001).Google Scholar
6. Poon, S.J., Shiflet, G.J., Ponnambalam, V., Keppens, V.M., Taylor, R., and Petculescu, G., in Supercooled Liquids, Glass Transition and Bulk Metallic Glasses, edited by Egami, T., Greer, A.L., Inoue, A., and Ranganathan, S., (Mater. Res. Soc. Proc. 754, Warrendale, PA, 2003,) pp. 167177.Google Scholar
8. Wang, Y., Stocks, G.M., Shelton, W.A., Nicholson, D.M.C., Temmerman, W.M., and Szotek, Z., Phys. Rev. Lett. 75, 2867 (1995).Google Scholar
9. Stocks, G.M., Ujfalussy, B., Wang, X., Nicholson, D.M.C., Shelton, W.A., Wang, Y., Canning, A., and Gyorffy, B.L., Phil. Mag. B 78, 665 (1998).Google Scholar
10. Landau, L. and Lifshitz, E., Phys. Z. Sowjet. 8, 153 (1935).Google Scholar
11. Gilbert, T.L., Phys. Rev. 100, 1243 (1955).Google Scholar
12. von Barth, U. and Hedin, L., J. Phys. C. 5, 1629 (1972).Google Scholar
13. Kohn, W. and Sham, L.J., Phys. Rev. A 140, 1133 (1965).Google Scholar
14. Hohenberg, P.C. and Kohn, W., Phys. Rev. B 136, 864 (1964).Google Scholar
15. Wang, Yang, Widom, Mike, Nicholson, Don, Mihalkovic, Marek, and Naidu, Siddartha, in Supercooled Liquids, Glass Transition and Bulk Metallic Glasses, edited by Egami, T., Greer, A.L., Inoue, A., and Ranganathan, S., (Mater. Res. Soc. Proc. 754, Warrendale, PA, 2003,) pp. 439444.Google Scholar
16. Nicholson, D.M.C., Wang, Yang, and Widom, Mike, in Supercooled Liquids, Glass Transition and Bulk Metallic Glasses, edited by Egami, T., Greer, A.L., Inoue, A., and Ranganathan, S., (Mater. Res. Soc. Proc. 754, Warrendale, PA, 2003,) pp. 451456.Google Scholar
17. Fuentes-Cabrera, Miguel, Nicholson, Don, Widom, Mike, Wang, Yang, and Mihalkovic, Marek (to be published in MRS proceeding.)Google Scholar