Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:41:21.889Z Has data issue: false hasContentIssue false

Mixing Rocksalt and Wurtzite Structure Binary Nitrides to Form Novel Ternary Alloys: ScGaN and MnGaN

Published online by Cambridge University Press:  01 February 2011

Costel Constantin
Affiliation:
Condensed Matter and Surface Science Program, Department of Physics and Astronomy Ohio University, Athens, OH 45701
Hamad Al-Brithen
Affiliation:
Condensed Matter and Surface Science Program, Department of Physics and Astronomy Ohio University, Athens, OH 45701
Muhammad B. Haider
Affiliation:
Condensed Matter and Surface Science Program, Department of Physics and Astronomy Ohio University, Athens, OH 45701
David Ingram
Affiliation:
Condensed Matter and Surface Science Program, Department of Physics and Astronomy Ohio University, Athens, OH 45701
Arthur R. Smith
Affiliation:
Condensed Matter and Surface Science Program, Department of Physics and Astronomy Ohio University, Athens, OH 45701
Get access

Abstract

Combination of tetrahedral and octahedral based nitrides are explored. The two cases of MnGaN and ScGaN with low Mn and Sc fractions are examined. It is found that for the MnGaN case, the Mn is incorporated under N rich conditions with little lattice change. However, for the ScGaN case, the Sc is incorporated onto the Ga sites but with a local bond angle distortion.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Gall, D., Petrov, I., Desjardins, P., and Greene, J. E., J. Appl. Phys. 86, 5524 (1999).Google Scholar
2. Dismukes, P., Yim, W. M., and Ban, V. S., Cryst, J.. Growth 13/14, 365 (1972).Google Scholar
3. Gall, D., Petrov, I., Madsen, L. D., Sundgren, J.-E., and Geene, J. E., J. Vac. Sci. Technol. A 16, 2411 (1998).Google Scholar
4. Gall, D., Petrov, I., Hellgren, N., Hulman, L., Sundgren, J.-E., and Geene, J. E., J. Appl. Phys. 84, 6034 (1998).Google Scholar
5. Moustakas, T. D., Molna, R. J., and Dismukes, J. P., Electrochem. Soc. Proc. 96–11, 197 (1996).Google Scholar
6. Smith, A. R., Al-Brithen, H. A. H., Ingram, D. C., and Gall, D., J. Appl. Phys. 90(4), 1809 (2001).Google Scholar
7. AL-Brithen, H. A., Smith, A. R., and Gall, D., to be published.Google Scholar
8. Farrer, N. and Bellaiche, L., Phys. Rev. B 66, 201203–1 (2002).Google Scholar
9. Little, M.E., Kordesch, M.E., Appl. Phy. Lett. 78, 2891 (2001).Google Scholar
10. Yang, H., Al-Brithen, H., Trifan, E., Ingram, D. C., and Smith, A. R., J. Appl. Phys. 91, 1053 (2002).Google Scholar
11. Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D., Science 287, 1019 (2000).Google Scholar
12. Kuwabara, S., Ishii, K., Haneda, S., Kondo, T., and Munekata, H., Physica E 10, 233 (2001).Google Scholar
13. Kuwabara, S., Kondo, T., Chikyow, T., Ahmet, P., Munekata, H., Jpn. J. Appl. Phys. 40, L724 (2001).Google Scholar
14. Thaler, G. T., Overberg, M. E., Gila, B., Frazier, R., Abernaty, C. R., Person, S. J., Lee, J. S., Lee, S. Y., Park, Y. D., Khim, Z. G., Kim, J., and Ren, F., Appl. Phys. Lett. 80, 3964 (2002).Google Scholar
15. Novikov, S. V., Edmonds, K. W., Giddings, A. D., Wang, K. Y., Staddon, C. R., Campion, R. P., Gallagher, B. L. and Foxon, C. T., Semicond. Sci. Technol. 19 (2004) L13–L14.Google Scholar
16. Rao, B. K. and Jena, P., Phys. Rev. Lett. 89, 185504 (2002).Google Scholar
17. Swanson, M. L., Handbook of Modern Ion Beam Materials Analysis, ed. Tesner, J.R. and Nastasi, M., Materials Research Society, (1995), pp 231.Google Scholar
18. Haider, M. B., Constantin, C., Al-Brithen, H., Yang, H., Trifan, E., Ingram, D. C., Kelly, C. V., Ijiri, Y., and Smith, A. R., J. Appl. Phys. 93(9), 5274 (2003).Google Scholar
19. Constantin, C., Al-Brithen, H., Haider, M. B., Ingram, D., and Smith, A. R., submitted to PRB Rapid Comm.Google Scholar
20. Guinier, A., “X-Ray Diffraction In Crystals, Imperfect Crystals, and Amorphous Bodies,” Dover Publications, Inc., New York, p. 310, 1994.Google Scholar
21. Ranjan, V., Bellaiche, L., and Walter, E. J., Phys. Rev. Lett. 90, 257602 (2003).Google Scholar