Article contents
Mixed Mode Interface Toughness Of Metal / Ceramic Joints
Published online by Cambridge University Press: 15 February 2011
Abstract
A mechanics study of the interface toughness of joints comprised of ceramic substrates joined by a thin ductile metal layer is carried out for arbitrary combinations of mode I and mode II loading. The crack lies on one of the metal/ceramic interfaces, and the mechanism of separation at the crack tip is assumed to be atomic decohesion. The SSV model proposed by Suo, Shih and Varias is invoked. This model employs a very narrow elastic strip imposed between the substrate and the ductile layer to model the expected higher hardness of material subject to high strain gradients and possible dislocation-free zone in the immediate vicinity of the crack tip. The criterion for crack advance is the requirement that energy release rate at the crack tip in this narrow elastic strip be the atomistic work of fracture. The contribution of plastic dissipation in the metal layer to the total work of fracture is computed as a function of the thickness and yield strength of the layer and of the relative amount of mode II to mode I. Ductile joints display exceptionally strong thickness and mixed mode dependencies.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1996
References
- 5
- Cited by