Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:59:38.279Z Has data issue: false hasContentIssue false

Mixed Alkali Effects in δ-Aluminas

Published online by Cambridge University Press:  15 February 2011

John L. Bjorkstam
Affiliation:
Department of Electrical Engineering, University of Washington, Seattle, WA 98195
Marco Villa
Affiliation:
Istituto di Fisica “A. Volta” e Gruppo Nazionale di Strutture della Materia del C.N.R., 27100 Pavia, Italy
Sergio Aldrovaidi
Affiliation:
Istituto di Fisica “A. Volta” e Gruppo Nazionale di Strutture della Materia del C.N.R., 27100 Pavia, Italy
Maurizio Corti
Affiliation:
Istituto di Fisica “A. Volta” e Gruppo Nazionale di Strutture della Materia del C.N.R., 27100 Pavia, Italy
Jamies S. Frye
Affiliation:
Regional NMR Facility, Colorado State University, Ft. Collins, Colorado 80523
Get access

Abstract

This paper presents a NMR study of mixed alkali effects in δ-aluminas. It is shown that the BPP theory of relaxation does not describe the NMR results. However, with an elementary analysis of the data, NMR yields information about the cation dynamics which substantially agrees with the diffusion measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Day, D. E., J. Non-Cryst. Solids, 21, 343 (1976).Google Scholar
2. Hayward, P. J., Phys. Chem. Glasses, 17, 54 (1976); 18, 1 (1977).Google Scholar
3. Sakka, S., Matusita, K. and Kamiya, K., Phys. Chem. Glasses, 20, 25 (1979).Google Scholar
4. Chandrashekhar, G. V. and Foster, L. M., Solid State Commun. 27, 269 (1978).Google Scholar
5. Vashishta, P., Mundy, J. N. and Shenoy, G. K., Eds. Fast Ion Transport in Solids, (North-Holland, New York (1979)).Google Scholar
6. For experimental, mathematical and interpretative details see: Bjorkstam, J. L., Manzini, S. and Villa, M., in ref. [5], and J. L. Bjorkstam and M. Villa, Phys. Rev. B (Dec. 1980) and J. Phys. (Paris) (Feb. 1981).Google Scholar
7. Kennedy, J. H. in Solid Electrolytes, Ed. Geller, S. (Springer-Verlag, Berlin) p. 105 (1977).Google Scholar
8. McWhan, D. B., Allen, S. J. Jr., Remeika, J. P. and Dernier, P. D., Phys. Rev. Lett., 35, 953 (1975).Google Scholar
9. Colomban, Ph. and Lucazeau, G., J. Chem. Phys., 72, 1213 (1980).Google Scholar
10. Kaneda, T., Bates, J. B. and Wang, J. C., Solid State Commun., 48, 469 (1978).Google Scholar
11. Abragam, A., The Principles of Nuclear Magnetism, (Clarendon Press, Oxford) Chap. X, (1961)Google Scholar
12. Bjorkstam, J. L. and Villa, M., Magn. Reson. Rev., 6, 1 (1980).Google Scholar
13. Walstedt, R. E., Dupree, R., Remeika, J. P. and Rodrigues, A., Phys. Rev., B15, 3442 (1977).CrossRefGoogle Scholar
14. Wolf, D., J. Phys. Chem. Solids, 40, 757 (1979).Google Scholar
15. Walstedt, R. E., Berg, R. S., Remeika, J. P., Cooper, A. S. and Prescott, B. E., Ref. 5, p. 355.Google Scholar
16. Briant, J.L. and Farrington, G.C., J. Electrochem Soc., in press.Google Scholar
17. Roth, W. and Farrington, G.C., Science, 196, 1332 (1977).Google Scholar
18. Seegmiller, B., M.S. Thesis, University of Washington (Seattle), 1977 (Unpublished).Google Scholar