Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T18:17:32.834Z Has data issue: false hasContentIssue false

Migration-Enhanced Molecular Beam Epitaxial Growth and Characterization of GaAs on Si Substrates

Published online by Cambridge University Press:  26 February 2011

J.H. Kim
Affiliation:
Jet Propulsion Laboratory, Photonic Devices Group, California Institute of Technology, Pasadena, California 91109
S. Sakai
Affiliation:
Electrical Engineering, The University of Florida, Gainesville, FL 32611
J.K. Liu
Affiliation:
Jet Propulsion Laboratory, Photonic Devices Group, California Institute of Technology, Pasadena, California 91109
G. Raohakrishnan
Affiliation:
Jet Propulsion Laboratory, Photonic Devices Group, California Institute of Technology, Pasadena, California 91109
S.S. Chang
Affiliation:
Electrical Engineering, The University of Florida, Gainesville, FL 32611
J. Katz
Affiliation:
Jet Propulsion Laboratory, Photonic Devices Group, California Institute of Technology, Pasadena, California 91109
N.A. El-Masry
Affiliation:
Materials Science   Engineering, N.C. State University, Raleigh, NC 27695
Get access

Abstract

We first report on migration-enhanced molecular beam epitaxial (MEMBE) growth and characterization of the GaAs layers on Si substrates (GaAs/Si). Excellent surface morphology GaAs layers were successfully grown on (100) Sisubstrates misoriented 4 toward [110] direction. The MEMBE growth method isdescribed and material properties are compared with those of normal two-step MBE-grown or in-situ annealed layers. Micrographs of cross-sectional view transmission electron microscopy (TEM) and scanning surface electron microscopy (SEM) of MEMBE-grown GaAs/Si showed dislocation densities of 107 cm-2 over ten times lower than those of two-step MBE-grown or in-situ annealedlayers. AlGaAs/GaAs double heterostructure lasers and light-emitting diodeshave been successfully grown on MEMBE GaAs/Si by both metal organic chemical vapor deposition and liquid phase epitaxy. MOCVD-grown lasers showed peak output power as high as 184 mW/facet, pulsed threshold currents as low as150 mA at 300 K, and differential quantum efficiencies of up to 30 %. The LPE-grown light-emitting diodes showed output powers of 1.5 mW and external quantum efficiencies of 3.3 mW/A per facet.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wang, W.I., Appl. Phys. Lett. 44, 1149 (1984).CrossRefGoogle Scholar
2. Fischer, R., Masselnik, W.T., Klem, J., Henderson, T., McGlinn, T.C., Klein, M.V., Morkoc, H., Mazur, J.H., and Washburn, J., J. Appl. Phys. 58, 374 (198b).CrossRefGoogle Scholar
3. Windhorn, T.H., Turner, G.W., and Metze, G.M., MRS proc. 67, 157 (1986).CrossRefGoogle Scholar
4. Deppe, D.G., Holonyak, N., Nam, D.W., Hsieh, K.C., Jackson, G.S., Matyi, R.J., Shichijo, H., Epler, J.E., and Chung, H., Appl. Phys. Lett. 51, 637 (1987).CrossRefGoogle Scholar
5. van der Ziel, J.P., Dupuis, R.D., Logan, R.A., Mikulyak, R.M., Pinzone, C.J., and Savage, A., Appl. Phys. Lett., 50 454 (1987).Google Scholar
6. Chen, H.Z., Ghaffari, A., Wang, H., Morkoc, H., and Yariv, A., Appl. Phys. Lett. 51, 1320 (1987).Google Scholar
7. Choi, H. K., Lee, J.W., Salerno, J.P., Connors, M.K., Tsaur, B.Y., and Fan, J.C.C., Appl. Phys. Lett. 52, 1114 (1988).Google Scholar
8. Kim, J.H., Nouhi, A., Radhakrishnan, G., and Katz, J., SPIE 945, 155 (1988).Google Scholar
9. Kim, J.H., Nouhi, A., Radhakrishnan, G., Liu, J.K., Lang, R.J., and Katz, J., Appi. Phys. Lett. 53, 1248 (1988).CrossRefGoogle Scholar
10. Kim, J.H., Liu, J.K., Radhakrishnan, G., Katz, J., Sakai, S., Chang, S.S., and El-Masry, N.A., Appl. Phys. Lett. 53, Dec. 12 (1988).Google Scholar
11. Horikoshi, Y., Kawashima, M., and Yamaguchi, H., Japan J. Appl. Phys. 25, L868 (1986).Google Scholar
12. Salokatve, A., Varrio, J., Lammasniemi, J., Asonen, H., and Pessa, M., Appl. Phys. Lett. 51, 1340 (1987).Google Scholar
13. Horikoshi, Y., Kawashima, M., and Yamaguchi, H., Japan J. Appl. Phys. 27, 169 (1988).Google Scholar
14. Sakai, S., Chang, S.S., Ramaswamy, R.V., Kim, J.H., Radhakrishnan, G., Liu, J.K., and Katz, J., Appl. Phys. Lett. 53, 1201 (1988).Google Scholar
15. Sakai, S., Chang, S.S., Kim, J.H., Radhakrishnan, G., and Katz, J., MRS Fall Meeting on Advances in Materials, Processing, and Devices in III–V Compound Semiconductors, Boston, MA, Nov.28-Dec.3, 1988, paper-W9.3.Google Scholar
16. Nakamura, S., Sakai, S., Chang, S.S., Kim, J.H., Liu, J.K., Radhakrishnan, G., and Katz, J. (unpublished).Google Scholar