Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T21:24:37.190Z Has data issue: false hasContentIssue false

Microwave Hydrothermal Synthesis of Bimetallic (Ti-V) Ions Modified MCM-41 for Epoxidation of Styrene

Published online by Cambridge University Press:  01 February 2011

Yajie Guo
Affiliation:
School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, P.R. China School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200030, P.R. China
Guangjian Wang
Affiliation:
School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, P.R. China School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200030, P.R. China
Yuran Wang
Affiliation:
School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, P.R. China School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200030, P.R. China
Zhengwang Li
Affiliation:
School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, P.R. China School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200030, P.R. China
Guangqing Liu
Affiliation:
School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, P.R. China School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200030, P.R. China
Get access

Abstract

Mesoporous molecular sieves MCM-41 modified by single (Ti) and bimetal (Ti-V) ions with highly ordered hexagonal arrangement of their cylindrical channels were prepared by direct synthesis under microwave–hydrothermal (M–H) conditions at 403K. Characterizations with powder X-ray diffraction (XRD), 29Si magic-angle spinning (MAS) NMR, N2 adsorption–desorption, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray photoelcctron spectra(XPS) and transmission electron microscopy (TEM) showed that Ti and V ions were introduced into MCM-41 under M-H conditions and Ti/V-Si bond was formed. Results revealed that all the samples were of a typical hexagonal arrangement of mesoporous structure. The modified materials were high active and selective in the epoxidation of styrene at 343 K in comparison with single-functional MCM-41. Moreover, compared to conventional method, the presented microwave hydrothermal synthesis of molecular sieves greatly improved the selectivity to styrene oxide, e.g., it reached 58.6% at styrene conversion of 18.7% over Ti-V-MCM-41 (50).

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S., Nature 359 (1992) 710.Google Scholar
[2] Marino, D, Gallegos, N. G., Bengoa, J.F., Alvarez, A.M. A, Cagnoli, M. V., Casuscelli, S. G., Herrero, E. R., Marchetti, S.G., Catal. Today 133–135 (2010) 632.Google Scholar
[3] Eimer, G. A., Casuscelli, S.G., Chanquia, C. M., Elias, V., Crivello, M. E., Herrero, E. R., Catal. Today 133–135 (2010) 639.Google Scholar
[4] Anunziata, O.A., Beltramone, A. R., Cussa, J., Catal. Today 133–135 (2010) 891.Google Scholar
[5] Lin, K.F., Pescarmona, P.P., Vandepitte, H., Liang, D.D., Tendeloo, G.V., Jacobs, P.A., J. Catal. 254 (2010) 64.Google Scholar
[6] Galacho, C., Carrott, M.M.L. Ribeiro, Carrott, P.J.M., Micropor. Mesopor. Mater. 108 (2010) 283.Google Scholar
[7] Shen, S.H., Guo, L.J., Catal. Today 129 (2007) 414.Google Scholar
[8] Jha, R.K., Shylesh, S., Bhoware, S.S., Singh, A.P., Micropor. Mesopor. Mater.95 (2006) 154.Google Scholar
[9] Du, G.A., b, Y.H. Yang, Qiu, W., Lim, S.Y., a, L. Pfefferle, Haller, G. L., Appl. Catal. a-Gen 313 (2006) 1.Google Scholar
[10] Xu, J.Q., Chu, W., Luo, S.Z., J. Mol. Catal. A Chem. 256 (2006) 48.Google Scholar
[11] Gomes, H.T., Selvam, P., Dapurkar, S.E., Figueiredo, J.L., Faria, J.L., Micro. Meso. Mater. 86 (2005) 287.Google Scholar
[12] Yang, Y.H., Du, G.A., Lim, S.Y., Haller, G.L., J. Catal. 234 (2005) 318.Google Scholar
[13] Chen, L.F., Norena, L.E., Navarrete, J., Wang, J. A., Mater. Chem. Phy. 97 (2006) 236.Google Scholar
[14] Barreca, D., Copley, M. P., Graham, A. E., Holmes, J. D., Morris, M. A., Seraglia, R., Spalding, T. R., Tondello, E., Appl. Catal. A-Gen., 304 (2006) 14.Google Scholar
[15] Selvaraj, M., Sinha, P.K., Lee, K., Ahn, I., Pandurangan, A., Lee, T.G., Micropor. Mesopor. Mater. 78 (2005) 139.Google Scholar
[16] Zhang, J.Y., Goldfarb, D., J. Am. Chem. Soc. 122 (2000) 7034.Google Scholar
[17] Corma, A., Chem. Rev. 97 (1997) 2373.Google Scholar
[18] Wei, D., Chueh, W.T., Haller, G.L., Catal. Today 51 (1999) 501.Google Scholar
[19] Parvulescu, V., Anastasescu, C., Su, B.L., J. Mol. Catal. A: Chem. 211 (2004) 143.Google Scholar
[20] Cundy, C.S., Collect. Czech. Chem. Commun. 63 (1998) 1699.Google Scholar
[21] Kang, K.K., Park, C.H., Ahn, W.S., Catal. Lett. 59 (1999) 45.Google Scholar
[22] Yin, D.Y., Liu, J.F., Zhang, Y., Gao, Q., Yin, D.L., Stud. Surf. Sci. Catal. 156 (2005) 851.Google Scholar
[23] Wang, X.X., Lefebvre, F., Patarin, J., Basset, J.M., Micropor. Mesopor. Mater. 42 (2001) 269.Google Scholar
[24] Zhang, H.W., Froba, M., Wang, J.L., Tanev, P.T., Wong, J., Pinnavaia, T.J., J. Am. Chem. Soc. 118 (1996) 9164.Google Scholar
[25] Gregg, S.J., Sing, K.S.W., Adsorption, Surface Area and Porosity, 2nd ed., Academic Press, New York, 1982.Google Scholar
[26] Kiseler, A.V., Lygin, V.I., Infrared Spectra of Surface Compounds and Adsorbed Substances, Nauka, Moscow, 1992 (in Russian).Google Scholar
[27] Camblor, M.A., Corma, A., J. Perez Pariente, J. Chem. Soc., Chem. Commun. (1993) 557.Google Scholar
[28] George, J., Shylesh, S., Singh, A.P.. Applied Catalysis A: General 290 (2005) 148.Google Scholar
[29] Stakheev, A. Yu., Shpiro, E.S., Apijok., J. J. Pyhs. Chem. 97 (1993) 5668.Google Scholar
[30] Reddy, Ettireddy P., Davydov, Lev, and Smirniotis, Panagiotis G., J. Phys. Chem. B, 106 (2002) 3394.Google Scholar
[31] Wang, G.J., Liu, Y.W., Guo, Y.J., Zhang, Z.X., Xia, X.M., Yang, Z.X., Surface & Coatings Technology 201 (2007) 6565.Google Scholar
[32] Wagner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F., Muilenberg, G.E., Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer, Eden Praier, MN, 1979.Google Scholar
[33] Willey, J., in: Briggs, D., Seah, M.P. (Eds.), Practical Surface Analysis, Auger and X-ray Photoelectron Spectroscopy, 2nd Ed. 1 (1990) 45.Google Scholar
[34] Tang, X. F., Li, Y. G., Huang, X. M., Xu, Y. D., Zhu, H. Q., Wang, J. G., Shen, W. J., Appl Catal. B, 62(3-4), (2006) 265.Google Scholar
[35] Reddy, B. M., Chowdhury, B., Reddy, E. P., Fernadez, A., J. Mol. Catal. A 162 (2000) 431.Google Scholar
[36] Reddy, B. M., Ganesh, I., Reddy, E. P., J. Phys. Chem. B 101 (1997) 1769.Google Scholar
[37] Stakheev, A.Y., Shpiro, E.S., Apijok, J., J. Phys. Chem. 97(1993) 5668.Google Scholar
[38] Wagner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F., Muilenberg, G.E., Handbookof X-ray Photoelectron Spectroscopy, Perkin-Elmer, Eden Praier, MN, 1979.Google Scholar
[39] Willey, J., in: Briggs, D., Seah, M.P. (Eds.), Practical Surface Analysis, Auger and X-ray Photoelectron Spectroscopy, 2nd Ed., Vol. 1, 1990.Google Scholar
[40] Mukhopadhyay, S.M., Garofalini, S.H., J. Noncryst. Solids 126 (1990) 202.Google Scholar
[41] Grohmann, I., Pilz, W., Walther, G., Kosslick, H., Tuan, V.A., Surf. Interface Anal. 22 (1994) 403.Google Scholar
[42] Gao, Xingtao, Wachs, Israel E., Catalysis Today 51 (1999) 233.Google Scholar
[43] Fraldos, M., Anderson, J.A., Banares, M.A., Fierro, J.L.G., Weller, S.W., J. Catal. 168 (1997) 110.Google Scholar