Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:16:28.886Z Has data issue: false hasContentIssue false

Microwave CVD of Diamond Using Methanol-Rare Gas Mixtures

Published online by Cambridge University Press:  26 February 2011

M. Buck
Affiliation:
IBM Research Division, Almaden Research Center, 650 Hlarry Road, San Jose, California 951!20-6099
T. J. chuang
Affiliation:
IBM Research Division, Almaden Research Center, 650 Hlarry Road, San Jose, California 951!20-6099
J. H Kaufman
Affiliation:
IBM Research Division, Almaden Research Center, 650 Hlarry Road, San Jose, California 951!20-6099
H. Seki
Affiliation:
IBM Research Division, Almaden Research Center, 650 Hlarry Road, San Jose, California 951!20-6099
Get access

Abstract

The deposition of diamond from a reactive vapor phase has been dominated by the use of very dilute gas mixtures of hydrocarbon molecules, usually methane, in hydrogen. Recently there have been reports using nitrogen and oxygen containing simple organics such as amines and alcohols which seem promising. The role of atoms other than hydrogen is still not very clear. There is need for more experimental data to further our understanding in this regard. Here we give a preliminary report on our investigation of deposition from methanol-rare gas mixtures using a small microwave reactor. An important result is that good diamond can be deposited from methanol without addition of hydrogen gas and the quality of the crystallites can be influenced by Ar in the plasma.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFRENCES

1. Angus, J.C., Will, H.A. and Stanko, W.S., J. Appl. Phys., 39, 2915 (1968).Google Scholar
2. Angus, J.C., Gardner, N.C., Poferl, D.J., Chauhan, S.P., Dyble, T. and Sung, Pai, in: Sinteticheskiye Almazy v Promyshlennosti, Ed. Bakul, V.N. (Naukova Dumka, Kiev, 1974)Google Scholar
3. Spitsyn, B. V., Bouilov, L. L. and Derjaguin, B. V., J. Cryst. Growth, 52, 219 (1981).Google Scholar
4. Matsumoto, S., Sato, Y., Tsutsumi, M. and Setaka, N., J. Material Sci., 17, 3106 (1982).Google Scholar
5. Kamo, M., Sato, Y., Matsumoto, S. and Setaka, N., J. Cryst. Growth, 62, 642 (1983).Google Scholar
6. Angus, J. C. and Hayman, C. C., Science, 241, 915 (1988).Google Scholar
7. Bachmann, P.K. and Messier, R., C and EN, 67(20), 24 (1989).Google Scholar
8. Hirose, Y. and Teresawa, Y., Jap. J. Appl. Phys., 25, L519 (1986).Google Scholar
9. Chang, C.P., Flamm, D. L., Ibbotson, D. E. and Mucha, I.A., J. Appl. Phys., 63 1744 (1988).Google Scholar
10. Watanabe, I. and Sugata, K., Jap. J. Appl.Phys., 27, 1397 (1988); I. Watanabe and K. Sugata, lap. J. Appl. Phys., 27, 1808 (1988);Google Scholar
11. Akatsuka, F., Hirose, Y. and Komaki, K, Jap..Appl. Phys., 27, L1600 (1988) 1% ethanol, 19% Ar, 80% hydrogen in Arc dischargeGoogle Scholar
12. Matsui, Y. and Sahara, M., Jap. J, Appl. Phys., 28, 1023 (1989).Google Scholar
13. Inspector, A., Liou, Y., McKenna, T. and Messier, R., Int. Coqf Metal. Coatings, April (1989), Surface and Coating Technology, in press.Google Scholar
14. Saito, Y., Sato, K., Tanaka, H., Fujita, K. and Matuda, S.,.J. Mater. Sci., 23, 842 (1988);Google Scholar
15. Kawato, T. and Kondo, K., Jap. Appl. Phys., 26, 1429 (1987).Google Scholar
16. Itoh, T., Kazahaya, T., Miyama, M., Daimon, M., Masuda, A., Etoh, Y., Abstracts: Spring Meeting JSAP, 881105–02, 441 (1988).Google Scholar
17. Suzuki, J., Kawarada, H., Mar, K.S., Wei, J., Yokota, Y. and Iliraki, A., Int. Conf. New Diamond Sci. Technol., 1P2-06 (1988); Jap. J. Appl. Phys., 28,L281 (1989).Google Scholar
18. Ishibori, K. and Ohira, Y., Int. Conf. New Diamond Sci. Technol., P2-07 (1988).Google Scholar
19. Toshima, H., Kotaki, T., Yaguchi, Y., Amada, Y. and Matsumoto, O., Int Conf New Diamond Sci. Technol., P2-10 (1988).Google Scholar
20. Ito, T., Masuda, A., Eto, Y., Ito, K. and Nishimoto, K., Int. Conf. New Diamond Sci, Technol., P2-16 (1988).Google Scholar
21. Hirose, Y., Takahasi, K., Iwasaki, K, Komaki, K and Fujimaki, T.,. Jpn. Soc. Appl. Phys. Spring Meeting, 29a-T-4 (1988).Google Scholar
22. Hirose, Y., Int. Conf. New Diamond Sci. Technol., 1–09 (1988).Google Scholar
23. Tanabe, T., Nishibayashi, Y., Imai, T., lkegaya, A. and Fujimori, N., Int. Conf. New Diamond Sci. Technol., 1–13 (1988).Google Scholar
24. Saito, Y., Sato, K., Tanaka, H. and Miyadera, H., J. Mater. Sci., 24, 293 (1989).Google Scholar
25. Mucha, J.A., Flamm, D. L., and Ibbotson, D. E.,. J. Appl. P1hys.,65 3448 (1989).Google Scholar
26. Meiners, L. G. and Alford, D. B., Rev. Sci. Instr., 57, 164 (1986).Google Scholar
27. Asmussen, J., Mallavarpu, R., Hamann, J.R. and lI.Park, C., IE!EE Proc., 62, 109 (1974).Google Scholar
28. Knight, D. S. and White, W. B., Mater. Res., 4, 385 (1989).Google Scholar
29. Rosner, D.E.,in “Annual Rev. of Mat. Sci.”, 2, 573 (1973).Google Scholar
30. Rony, P.R. and Hanson, D.N., J. Chem. Phys., 44, 2536 (1966)Google Scholar
31. Hsu, W.L., J. Vac. Sci. Technol., A 7, 1047 (1989).Google Scholar
32. Coburn, J.W. and Winters, H.F., J. Appl. Phys., 50, 3189 (1979).Google Scholar
33. Matumoto, O., Toshima, H. and Kanzaki, Y., Thin Solid Films, 128, 341 (1985).Google Scholar