Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T21:14:26.864Z Has data issue: false hasContentIssue false

A microtensile set up for characterising the mechanical properties of films

Published online by Cambridge University Press:  01 February 2011

B. Cyziute
Affiliation:
Fizikos katedra, Kauno Technologijos UniversitetasStudentu 50, 3028, Kaunas, Lithuania
L. Augulis
Affiliation:
Fizikos katedra, Kauno Technologijos UniversitetasStudentu 50, 3028, Kaunas, Lithuania
J. Bonneville
Affiliation:
Laboratoire de Métallurgie Physique, Université de Poitiers, UMR-CNRS 6630, BP 30179, 86962 Futuroscope, France
P. Goudeau
Affiliation:
Laboratoire de Métallurgie Physique, Université de Poitiers, UMR-CNRS 6630, BP 30179, 86962 Futuroscope, France
B. Lamongie
Affiliation:
Laboratoire de Métallurgie Physique, Université de Poitiers, UMR-CNRS 6630, BP 30179, 86962 Futuroscope, France
S. Tamulevicius
Affiliation:
Fizikos katedra, Kauno Technologijos UniversitetasStudentu 50, 3028, Kaunas, Lithuania
C. Templier
Affiliation:
Laboratoire de Métallurgie Physique, Université de Poitiers, UMR-CNRS 6630, BP 30179, 86962 Futuroscope, France
Get access

Abstract

A computer control deformation set-up has been specifically developed for measuring the elastic and plastic properties of thin films. It combines a piezo-actuated microtensile-testing device, based on an original tripod design, with an optical image acquiring and analysis system for measuring specimen strains. The paper will be partly devoted to describe the experimental deformation set up and its performance through mechanical tests of polyimide and aluminum samples. The Young's moduli, which are deduced from the stress-strain curves, are in good agreement with reported bulk average values. The results confirmed the ability of the equipment for the measurements of very small load and displacement levels, which are a prerequisite for such type of investigations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Augulis, L., Tamulevicius, S., Augulis, R., Bonneville, J., Goudeau, P., Templier, C., Optics and Lasers in Engineering 42, 1 (2004)Google Scholar
2. Colin, J., private communication.Google Scholar
3. Bruck, H. A., McNeill, S. R., Sutton, M.A. and Peters, W. H., Experimental Mechanics 29, 261 (1989)Google Scholar
4. Choi, S. and Shah, S.P., Experimental Mechanics 29, 307 (1997)Google Scholar
5. Doumalin, P., PhD thesis, Polytechnic High School, Palaiseau, France (2000)Google Scholar
6. Dupre, J.-C., Valle, V.-C., Bremand, F.-J. and Hesser, F., Deftac 2004 Version 4.0, Copyright©2004. All right reserved, http://www-lms.univ-poitiers.fr, FranceGoogle Scholar
7. Villain, P., PhD, 2002, Poitiers University, FranceGoogle Scholar
8. Badawi, K.F., Villain, P., Goudeau, P. and Renault, P.-O., Appl. Phys. Lett. 80, 4705 (2002)Google Scholar
9. Bonneville, J., Spätig, P., Martin, J.-L., Material Research Soc. Symp. Proc.- High-Temperature Ordered Intermetallic Alloys VI 364, 369 (1995)Google Scholar
10. Guiu, F. and Pratt, P. L., Phys. Stat. Sol. 6, 111 (1964)Google Scholar
11. Farvacque, J-L., Crampon, J., Doukhan, J-C. and Escaig, B., Phys. Stat. Sol. 14, 623 (1972)Google Scholar
12. Kubin, L. P., Phil. Mag. 30, 705 (1974)Google Scholar