Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:27:13.214Z Has data issue: false hasContentIssue false

Microstructures Of Irradiated And Mechanically Deformed Metals And Alloys: Fundamental Aspects

Published online by Cambridge University Press:  01 February 2011

S.J. Zinkle
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, P.O.Box 2008, Oak Ridge, TN, 37831–6138, USA
N. Hashimoto
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, P.O.Box 2008, Oak Ridge, TN, 37831–6138, USA
Y. Matsukawa
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, P.O.Box 2008, Oak Ridge, TN, 37831–6138, USA
R.E. Stoller
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, P.O.Box 2008, Oak Ridge, TN, 37831–6138, USA
Yu.N. Osetsky
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, P.O.Box 2008, Oak Ridge, TN, 37831–6138, USA
Get access

Abstract

Recent molecular dynamics and transmission electron microscopy results on irradiated metallic materials are reviewed, with an emphasis on defect production in the displacement cascade and the fluence- and temperature-dependent accumulation of defect clusters. Materials analyzed include Fe, V, Cu, austenitic stainless steel, V4%Cr4%Ti, and ferritic/martensitic steel. Intrinsic differences between the defect accumulation behavior of body centered cubic (BCC) and face centered cubic (FCC) metals are highlighted. Results on the temperature-dependent vacancy cluster density of Cu are discussed in terms of thermal stability of stacking fault tetrahedra (SFTs). Finally, recent results on deformation behavior of irradiated, quenched, and deformed metals are discussed, with particular emphasis on flow localization mechanisms (e.g., dislocation channeling), and experimental and molecular dynamics studies of the detailed dislocation-defect cluster interactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zinkle, S.J. and Singh, B.N., J. Nucl. Mater. 199, 173 (1993).Google Scholar
2. Norgett, M.J., Robinson, M.T., and Torrens, I.M., Nucl. Eng. Des. 33, 50 (1975).Google Scholar
3. Averback, R.S., Benedek, R., and Merkle, K.L., Phys. Rev. B 18 (8), 4156 (1978).Google Scholar
4. Averback, R.S., J. Nucl. Mater. 216, 49 (1994).Google Scholar
5. Stoller, R. E. and Greenwood, L.E., in 20th Int. Symp. on Effects of Radiation on Materials, ASTM STP 1405, edited by Rosinski, S.T., Grossbeck, M.L., Allen, T.R., and Kumar, A.S. (American Society for Testing and Materials, West Conshohocken, PA, 2001), p. 204.Google Scholar
6. Yu.N., Osetsky, Bacon, D.J., and Singh, B.N., J. Nucl. Mater. 307–311, 866 (2002).Google Scholar
7. Bacon, D.J., Gao, F., and Yu.N., Osetsky, J. Nucl. Mater. 276, 1 (2000).Google Scholar
8. Stoller, R.E., J. Nucl. Mater. 276, 22 (2000).Google Scholar
9. Stoller, R.E., J. Nucl. Mater. 283–287, 746 (2000).Google Scholar
10. Yu.N., Osetsky and Bacon, D.J., Nucl. Instr. Meth. B 180, 85 (2001).Google Scholar
11. Stoller, R.E., Odette, G.R., and Wirth, B.D., J. Nucl. Mater. 251, 49 (1997).Google Scholar
12. Bacon, D.J., Calder, A.F., Gao, F., Kapinos, V.G., and Wooding, S.J., Nucl. Instr. Meth. B 102, 37 (1995).Google Scholar
13. Phythian, W.J., Stoller, R.E., Foreman, A.J.E., Calder, A.F., and Bacon, D.J., J. Nucl. Mater. 223, 245 (1995).Google Scholar
14. Wirth, B.D., Odette, G.R., Maroudas, D., and Lucas, G.E., J. Nucl. Mater. 276, 33 (2000).Google Scholar
15. Nordlund, K. and Gao, F., Appl. Phys. Lett. 74 (18), 2720 (1999).Google Scholar
16. Wirth, B.D., Bulatov, V., and Rubia, T. Diaz de la, J. Nucl. Mater. 283–287, 773 (2000).Google Scholar
17. Bacon, D.J., Yu.N., Osetsky, Stoller, R.E., and Voskoboinikov, R.E., J. Nucl. Mater. 323, 152 (2003).Google Scholar
18. Zinkle, S.J., Radiat. Eff. Def. Solids 148, 447 (1999).Google Scholar
19. Yu.N., Osetsky, Bacon, D.J., Serra, A., Singh, B.N., and Golubov, S.I., J. Nucl. Mater. 276, 65 (2000).Google Scholar
20. Zinkle, S.J. and Snead, L.L., J. Nucl. Mater. 225, 132 (1995).Google Scholar
21. Diehl, J. and Schilling, W., in 3rd Intern. Conf. on Peaceful Uses of Atomic Energy, (United Nations, New York, 1965), Vol. 9, p. 72.Google Scholar
22. Rubia, T. Diaz de la, Averback, R.S., Hsieh, H., and Benedek, R., J. Mater. Res. 4 (3), 579 (1989).Google Scholar
23. Jenkins, M.L., Kirk, M.A., and Phythian, W.J., J. Nucl. Mater. 205, 16 (1993).Google Scholar
24. Robertson, I.M., Tappin, D.K., and Kirk, M.A., Philos. Mag. A 68 (5), 843 (1993).Google Scholar
25. Zinkle, S.J., J. Nucl. Mater. 150, 140 (1987).Google Scholar
26. Zinkle, S.J. and Farrell, K., J. Nucl. Mater. 168, 262 (1989).Google Scholar
27. Zinkle, S.J. and Singh, B.N., J. Nucl. Mater. 283–287, 306 (2000).Google Scholar
28. Zinkle, S.J., Horsewell, A., Singh, B.N., and Sommer, W.F., J. Nucl. Mater. 212–215, 132 (1994).Google Scholar
29. Kiritani, M., J. Nucl. Mater. 155–157, 113 (1988).Google Scholar
30. Dai, Y., “Mechanical properties and microstructures of copper, gold and palladium single crystals irradiated with 600 MeV protons,” Ph.D. Thesis, Lausanne, EPFL, 1995.Google Scholar
31. Zinkle, S.J. and Kulcinski, G.L., J. Nucl. Mater. 122&123, 449 (1984).Google Scholar
32. Zinkle, S.J., in 15th Int. Symp. on Effects of Radiation on Materials, ASTM STP 1125, edited by Stoller, R.E., Kumar, A.S., and Gelles, D.S. (American Society for Testing and Materials, Philadelphia, 1992), p. 813.Google Scholar
33. Muroga, T., Heinisch, H.L., Sommer, W.F., and Ferguson, P.D., J. Nucl. Mater. 191–194, 1150 (1992).Google Scholar
34. Eldrup, M., Singh, B.N., Zinkle, S.J., Byun, T.S., and Farrell, K., J. Nucl. Mater. 307–311, 912 (2002).Google Scholar
35. Zinkle, S.J., Maziasz, P.J., and Stoller, R.E., J. Nucl. Mater. 206, 266 (1993).Google Scholar
36. Kirk, M.A., Robertson, I.M., Jenkins, M.L. et al., J. Nucl. Mater. 149, 21 (1987).Google Scholar
37. English, C.A. and Jenkins, M.L., Mater. Sci. Forum 15–18, 1003 (1987).Google Scholar
38. Rice, P.M. and Zinkle, S.J., J. Nucl. Mater. 258–263, 1414 (1998).Google Scholar
39. Rowcliffe, A.F., Zinkle, S.J., Stubbins, J.F, Edwards, D.J., and Alexander, D.J., J. Nucl. Mater. 258–263, 183 (1998).Google Scholar
40. Osetsky, Yu.N., Serra, A., Victoria, M., Golubov, S.I., and Priego, V., Philos. Mag. A 79, 2285 (1999).Google Scholar
41. Zinkle, S.J. and Lucas, G.E., in Fusion Materials Semiannual Progress Report for Period ending June 30, 2003, DOE/ER-0313/34, (Oak Ridge National Lab, 2003), p. 101.Google Scholar
42. Sharp, J.V., Radiat. Eff. 14, 71 (1972).Google Scholar
43. Wechsler, M.S., in The Inhomogeneity of Plastic Deformation, edited by Reed-Hill, R.E. (Am. Society for Metals, Metals Park, OH, 1972), p. 19.Google Scholar
44. Luft, A., Prog. Mater. Sci. 35, 97 (1991).Google Scholar
45. Hashimoto, N., Byun, T.S., Farrell, K., and Zinkle, S.J., J. Nucl. Mater., Proc. 11th Int. Conf. on Fusion Reactor Materials, Kyoto, Dec. 7–11, 2003, in press (2004).Google Scholar
46. Farrell, K., Byun, T.S., and Hashimoto, N., Report No. ORNL/TM-2002/63, 2003.Google Scholar
47. Hashimoto, N., Ando, M., Tanigawa, H. et al., Fusion Science and Technology 44 (2), 490 (2003).Google Scholar
48. Wirth, B.D., Bulatov, V., and Rubia, T. Diaz de la, J. Eng. Mater. and Technol. 124, 329 (2002).Google Scholar
49. Hashimoto, N., Zinkle, S.J., Rowcliffe, A.F., Robertson, J.P., and Jitsukawa, S., J. Nucl. Mater. 283–287, 528 (2000).Google Scholar
50. Hashimoto, N., Zinkle, S.J., Klueh, R.L., Rowcliffe, A.F., and Shiba, K., in Microstructural Processes During Irradiation-2000, MRS Symposium Proceedings, edited by Elliman, R.G. (Materials Research Society, Warrendale, PA, 2001), Vol. 650, p. R1.10.1.Google Scholar
51. Matsukawa, Y. and Zinkle, S.J., J. Nucl. Mater., Proc. 11th Int. Conf. on Fusion Reactor Materials, Kyoto, Dec. 7–11, 2003, in press (2004).Google Scholar
52. Yoshida, S., Kiritani, M., Deguchi, Y., and Kamigaki, N., Trans. JIM 9 Supplement (Proc. ICSMA-1), 83 (1968).Google Scholar
53. Bapna, M.S. and Meshii, M., Mater. Sci. Eng. 16, 181 (1974).Google Scholar
54. Yu.N., Osetsky, Stoller, R.E., and Matsukawa, Y., J. Nucl. Mater., Proc. 11th Int. Conf. on Fusion Reactor Materials, Kyoto, Dec. 7–11, 2003, in press (2004).Google Scholar
55. Johnson, E. and Hirsch, P.B., Philos. Mag. A 43 (1), 157 (1981).Google Scholar
56. Noda, K., Saka, H., Shiraishi, K., Yoshida, H., and Imura, T., in Proc. 5th Intern. Conf. on High Voltage Electron Microscopy, Kyoto, (Japanese Soc. of Electron Microscopy, Tokyo, 1977), p. 403.Google Scholar
57. Makin, M.J. and Sharp, J.V., Phys. Stat. Sol. 9, 109 (1965).Google Scholar
58. Singh, B.N., Foreman, A.J.E., and Trinkaus, H., J. Nucl. Mater. 249, 103 (1997).Google Scholar
59. Odette, G.R., He, M.Y., Donahue, E.G., Spätig, P., and Yamamoto, T., J. Nucl. Mater. 307–311, 171 (2002).Google Scholar