Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T18:30:21.875Z Has data issue: false hasContentIssue false

Microstructures of GaN and InxGa1-xN Films Grown by MOCVD on freestanding GaN Templates

Published online by Cambridge University Press:  01 February 2011

J. Jasinski
Affiliation:
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Z. Liliental-Weber
Affiliation:
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
D. Huang
Affiliation:
Virginia Commonwealth University, Richmond, VA, USA
M. A. Reshchikov
Affiliation:
Virginia Commonwealth University, Richmond, VA, USA
F. Yun
Affiliation:
Virginia Commonwealth University, Richmond, VA, USA
H. Morkoç
Affiliation:
Virginia Commonwealth University, Richmond, VA, USA
C. Sone
Affiliation:
Samsung Advanced Institute of Technology, P.O.Box 111, Suwon, KOREA
S. S. Park
Affiliation:
Samsung Advanced Institute of Technology, P.O.Box 111, Suwon, KOREA
K. Y. Lee
Affiliation:
Samsung Advanced Institute of Technology, P.O.Box 111, Suwon, KOREA
Get access

Abstract

We summarize structural properties of thick HVPE GaN templates from the point of view of their application as substrates for growth of nitride layers. This is followed by the results of optical and structural studies, mostly transmission electron microscopy, of nitride layers grown by MOCVD on top of the HVPE substrates. The results indicate high structural quality of these layers with a low density of threading dislocations (in the range of 106 cm-2). Convergent beam electron diffraction studies showed that the MOCVD GaN films have Ga-polarity, the same polarity as the HVPE GaN substrates. Structural studies of an InGaN layer grown on top of the MOCVD GaN film showed the presence of two layers, which differed in lattice parameter and composition. The upper layer, on the top of the structure had a clattice parameter about 2 % larger than that of GaN and contained 10.3 ± 0.8 % of In. Values measured for the thinner, intermediate layer adjacent to the GaN layer were about 2.5 times lower.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Molnar, R.J., Goetz, W., Romano, L.T., Johnson, N.M., J. Cryst. Growth. 178, 147 (1997).Google Scholar
2. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., and Chocho, K., Appl. Phys. Lett. 73, 832 (1998)Google Scholar
3. Kelly, M.K., Vaudo, R.P., Phanse, V. M., Gorgens, L.. Ambacher, O.. Stutzmann, M., Jpn. J. Appl. Phys. 38, L217 (1999).Google Scholar
4. Miskys, C. R., Kelly, M. K., Ambacher, O., Martínez-Criado, G., and Stutzmann, M., Appl. Phys. Lett. 77, 1858 (2000)Google Scholar
5. Jasinski, J., Swider, W., Liliental-Weber, Z., Visconti, P., Jones, K.M., Reshchikov, M.A., Yun, F., Morkoç, H., Park, S.S., and Lee, K.Y., Appl. Phys. Lett. 78, 2297 (2001)Google Scholar
6. Freitas, J.A. Jr, Braga, G.C.B., Moore, W.J., Tischler, J.G., Culbertson, J.C., Fatemi, M., Park, S.S., Lee, S.K. and Park, Y., J. Cryst. Growth. 231, 322 (2001)Google Scholar
7. Martínez-Criado, G., Miskys, C.R., Cros, A., Ambacher, O., Cantarero, A., and Stutzmann, M., J. Appl. Phys. 90, 5627 (2001)Google Scholar
8. Reshchikov, M.A., Huang, D., Yun, F., He, L., Morkoç, H., Reynolds, D.C., Park, S.S., and Lee, K.Y., Appl. Phys. Lett. 79, 3779 (2001)Google Scholar
9. Jasinski, J. and Liliental-Weber, Z., J. Electron. Mat., special issue on SiC and III-V nitride materials and devices, (2002) in press.Google Scholar
10. Narayanan, V., Lorenz, K., Kim, Wook and Mohajan, S., Phil. Mag. A 82, 885 (2002)Google Scholar
11. Speck, J. S., Brewer, M.A., Beltz, G., Romanov, A.E., and Pompe, W., J. Appl. Phys. 80, 3808 (1996)Google Scholar
12. Mathis, S.K., Romanov, A.E., Chen, L.F., Beltz, G.E., Pompe, W., Speck, J.S., phys. stat. sol. (a) 179, 125 (2000)Google Scholar
13. Liliental-Weber, Z., Workshop on Extended Defects, Belize, January 27-31, 2002, unpublished.Google Scholar
14. Liliental-Weber, Z., Jasinski, J., Washburn, J., O'Keefe, M.A., Microscopy Society of America, Quebec City, Canada, August 4-8, 2002, submitted.Google Scholar
15. Wu, X. H., Brown, L. M., Kapolnek, D., Keller, S., Keller, B., DenBaars, S. P., and Speck, J. S., J. Appl. Phys. 80, 3228 (1996)Google Scholar
16. Romano, L. T., Northrup, J. E., and O'Keefe, M. A., Appl. Phys. Lett. 69, 2394 (1996)Google Scholar
17. Liliental-Weber, Z., Kisielowski, C., Ruvimov, S., Chen, Y., Washburn, J., Grzegory, I., Bockowski, M., Jun, J., Porowski, S., J. Electron. Mat. 25, 1545 (1996)Google Scholar
18. Rouviere, J. -L., Arlery, M., Bourret, A., Niebuhr, R., Bachem, K. -H., Mat. Res. Soc. Symp. Proc. 395, 393 (1996)Google Scholar
19. Liliental-Weber, Z., Benamara, M., Richter, O., Swider, W., Washburn, J., Grzegory, I., Porowski, S., Yang, J. W., Nakamura, S., Mat. Res. Soc. Symp. Proc. 512, 363 (1998)Google Scholar
20. Gorgens, L., Ambacher, O., Stutzmann, M., and Miskys, C., Scholz, F., and Off, J., Appl. Phys. Lett. 76, 577 (2000)Google Scholar
21. Liliental-Weber, Z., Benamara, M. and Washburn, J., Domagala, J.Z. and Bak-Misiuk, J., Piner, E.L., Roberts, J.C. and Bedair, S. M., J. Electr. Mater. 30, 439 (2001)Google Scholar