Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T23:33:11.522Z Has data issue: false hasContentIssue false

Microstructures in Pb(In1/2Nb1/2)O3 with the Perovskite B-site Randomness

Published online by Cambridge University Press:  29 February 2012

S. Mori*
Affiliation:
Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
K. Kurushima
Affiliation:
Toray Research Center, Ohtsu, Shiga 520-8567, Japan.
K. Kobayashi
Affiliation:
Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
H. Ohwa
Affiliation:
Gifu University, Gifu 501-1193, Japan.
N. Yasuda
Affiliation:
Gifu University, Gifu 501-1193, Japan.
K. Ohwada
Affiliation:
Spring 8, Japan Atomic Energy Agency, Sayo-cho, Hyogo 679-5148, Japan
Get access

Abstract

We have investigated microstructures in both the antiferroelectric (AFE) and relaxor states of Pb(In1/2Nb1/2)O3 (PIN) with the perovskite structure by a transmission electron microscopy (TEM). Electron diffraction (ED) experiments revealed that the AFE state is characterized as the modulated structure with the modulation vector of q=1/4 1/4 0. High-resolution TEM images clearly show the coexistence of two types of domains consisting of the modulated and the nonmodulated structures with the 100 ∼ 200 nm size. On the other hand, in the relaxor state there appear two types of diffuse scatterings in the ED patterns. One is diffuse spots at the 1/2 1/2 0-type reciprocal positions and the other is diffuse streaks elongating along the <110> direction around the fundamental spots. The real-space TEM images clearly demonstrate the presence of nanodomains with the average size of ∼ 5 nm. These nanodomains in the relaxor state should be responsible for the characteristic dielectric properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Park, S. and Shrout, T. R., J. Apll. Phys. 82, 1804 (1997).Google Scholar
2. Uchino, K., Piezoelectric actuators and ultrasonic motors (Kluwer Academic, Boston) (1996).Google Scholar
3. Service, R. F., Science 275, 1878 (1997).Google Scholar
4. Bursill, L.A., Ferroelectrics 191, 129 (1997).Google Scholar
5. Kupriyanov, M. F., Turik, A. V., Zaitsev, S. M. and Fesenko, E. G., Phase Transit. 4, 65 (1983).Google Scholar
6. Nomura, K., Yasuda, N., Ohwa, H. and Terauchi, H., J. Phys. Soc. Jpn. 66, 1856 (1997)Google Scholar
7. Randall, C. A., Barber, D. J., Groves, P. and Whatmore, R.W., J. Mater. Sci. 23, 3678, (1988).Google Scholar
8. Prokopalo, O.I., Raevskii, I. P., Malitskaya, M. A., Popov, Yu. M., Bokov, A. A. and Smotrakov, V. G., Ferroelecrics 45, 89 (1982).Google Scholar
9. Bokov, A. A., Raevskii, I. P., and Smotrakov, V. G., Sov. Phys. Solid State 26, 1708 (1984).Google Scholar
10. Groves, P., J. Phys. C 19, 5103 (1986).Google Scholar
11. Ohwa, H., Iwata, M., Orihara, H., Yasuda, N. and Ishibashi, Y., J. Phys. Soc. Jpn. 69, 1533 (2000).Google Scholar
12. Ohwada, K. and Tomita, Y., J. Phys. Soc. Jpn., 79, 011012 (2010).Google Scholar
13. Kurushima, K., Ohwa, H., Yasuda, N., Ohwada, K. and Mori, S.. (unpublished).Google Scholar
14. Fu, D., Taniguchi, H., Itoh, M., Koshihara, S., Yamamoto, N., and Mori, S., Phys. Rev. Lett. 103, 207601 1-4 (2009).Google Scholar