Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T17:59:12.142Z Has data issue: false hasContentIssue false

Microstructure, Stress and Electrical Properties of the Highly Stable W/P+-In0.53Ga0.47 as Ohmic Contacts

Published online by Cambridge University Press:  25 February 2011

A. Katz
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
D. Maher
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
P.M. Thomas
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
B.E. Weir
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
W.C. Dautremont-Smith
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
L.C. Kimerling
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
Get access

Abstract

Non-alloyed refractory ohmic contacts to P+-ln0.53 Ga0.47 As layer have been fabricated using sputtered W and rapid thermal processing. These contacts showed excellent thermal stability over the temperature range of 300 to 750°C, with an abrupt and almost unreacted metal-semiconductor interface. The W film biaxial stresses were found to be strongly depended on the Ar pressure during the sputter deposition. At low Ar pressures the film were deposited with compressive stress, and became tensile at pressures higher than 7mTorr with a maximum value of about 8×l09 dyne cm2 as a result of Ar deposition pressure of 28mTorr. The W contacts to Zn doped 1×1019 cm−3 In0.53GA0.47 As film was found to be ohmic already as deposited with a minimum specific resistance of about 7.5×10−6 Ωcm−2, achieved as a result of heating at 600°C for about 30 sec.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Katz, A., Dautremont-Smith, W. C., Thomas, P. M., Koszi, L. A., Lee, J. W., Riggs, V. G., Brown, R. L., Zülco, J. L., Lahav, A., J. Appl. Phys. 65, 4319 (1989).Google Scholar
2 Katz, A., Dautremont-Smith, W. C., Chu, S. N. G., Thomas, P. M., Koszi, L. A., Lee, J. W., Riggs, V. G., Brown, R. L., Napholtz, S. G., Zilko, J. L. and Lahav, A., Appl. Phys. Lett., 54, 2306 (1989).Google Scholar
3 Goodwin, A. R., Davies, I. G. A., Gibb, R. M. and Murphy, R. H., J. Lightwave Tech. 6, 1424 (1989).Google Scholar
4 Shih, Y. C., Callegari, A., Murakami, M., Wilkie, E. L., Hovel, H. J., Parks, C. C. and Childs, K. D., J. Appl. Phys., 64, 2113 (1988).Google Scholar
5 Lahav, A. G., Wu, C. S. and Baiocchi, F. A., J. Vac. Sci. Technol. B, 6, 1785 (1988).Google Scholar
6 Murakami, M., Shih, Y. C., Price, W. H., Wilkie, E. L., Childs, K. D. and Parks, C. C., J. Appl. Phys., 64, 1974 (1988).Google Scholar
7 Ishii, K., Oshima, T., Futatsugi, T., Fujii, T., Yokoyama, N. and Shibatomi, A., IEDM 1986 Proc, IEEE, CH2381, 274 (1986).Google Scholar
8 Lahav, A., Ren, F., Kopf, R. F. and Shearer, J. L., Private Communication.Google Scholar
9 Anderson, W. T. Jr., Christou, A. and Davey, J. E., Thin Solid Films, 104, 57 (1983).Google Scholar
10 Reeves, G. K. and Harrison, H. B., IEEE Elec. Dev. Lett. 5, 111 (1982).Google Scholar
11 Katz, A., Weir, B. E., Maher, D., Thomas, P. M., Soler, M., Dautremont-Smith, W. C., Karlicek, R. F. Jr., Wynn, J. D. and Kimerling, L. C., Appl. Phys. Lett. 15 Nov. Issue (1989).Google Scholar
12 Doolittle, L. T., Nucl. Instr. and Meth., B9, 344 (1985).Google Scholar
13 Itohin, T. Ion Beam Assisted Film Growth, (Elsevier Science Publisher, New York, 1989) pp. 121123.Google Scholar
14 Lahav, A. and Blech, I. A., J. Appl. Phys., To be published.Google Scholar