Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T06:56:08.929Z Has data issue: false hasContentIssue false

Microstructure of Zr3Al After 2 MeV Proton Bombardment

Published online by Cambridge University Press:  25 February 2011

A. J. Ardell
Affiliation:
Department of Materials Science and Engineering, University of California, Los Angeles, CA 90024
D. F. Pedraza
Affiliation:
Metals and Ceramics Division, P. O. Box 2008, Oak Ridge National Laboratory, Oak Ridge, TN 37831
R. A. Buhl
Affiliation:
Metals and Ceramics Division, P. O. Box 2008, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

The ordered intermetallic Ll2 alloy Zr3Al was irradiated with 2 MeV protons at -124 °C to fluences up to 2 × 1015 H+/mm2 and at 250 °C to fluences up to 1 × 1015 H+/mm2. Defects with spherically symmetric strain fields were produced at both irradiation temperatures. They are of interstitial character at -124 °C and vacancy character at 250 °C. Disordering is induced at -124 °C, whereas irradiating at 250 °C initially lowers, then slightly raises, the degree of long-range order above its unirradiated value. Additional defects that appear as black spots were imaged using superlattice reflections in dark field. For the low-temperature irradiations they were seen at all doses, but were present at only the lowest close for the high-temperature irradiations. They are probably disordered zones, although some of the zones may be amorphous at the higher doses in the low-temperature irradiations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Howe, L. M. and Rainville, M. H.. J. Nucl Mater., 68 (1977) 215.CrossRefGoogle Scholar
2. Chen, F. C., Ardell, A. J. and Pedraza, D. F., Mater. Res. Soc. Symp. Proc., 213 (1991) 763.CrossRefGoogle Scholar
3. Cheng, J., Yuan, M., Wagner, C. N. J. and Ardell, A. J., J. Mater. Res., 4 (1989) 565.Google Scholar
4. Carpenter, G. J. C. and Schulson, E. M., J. Nucl Mater., 73 (1978) 180.Google Scholar
5. Koike, J., Okamoto, P. R., Renn, L. E. and Meshii, M., Metall Trans., 21A (1990) 1799.Google Scholar
6. Lewis, M. B., Allen, W. R., Buhl, R. A., Packan, N. H., Cook, S. W. and Mansur, L. K., Nucl. Instr. Methods Phys. Res. B. 43 (1989) 243.Google Scholar
7. Biersack, J. P. and Eckstein, W.. Appl Phys. A, 34 (1984) 73.Google Scholar
8. Schulson, E. M.. Acta Metall. Mater., 26 (1978) 1189.Google Scholar
9. Ardell, A. J.. Mater. Sci. Engr. A, 152 (1992) 212.Google Scholar
10. Urban, K.. Phys. Stat. Sol A, 87 (1985) 459.CrossRefGoogle Scholar
11. Ashby, M. F. and Brown, L. M., Philos. Mag., 8 (1963) 1083.CrossRefGoogle Scholar
12. Aronln, L. R.. J. Appl Phys., 25 (1954) 344.Google Scholar
13. Chen, F. C. and Ardell, A. J.. in press.Google Scholar
14. Cheng, J., Lee, C.-S., Wagner, C. N. J. and Ardell, A. J., Mater. Res. Soc. Symp. Proc, 133 (1989) 499.Google Scholar
15. Jenkins, M. L., Katerbau, K. -H. and Wilkens, M.. Philos. Mag., 34 (1976) 1141.Google Scholar
16. Luzzi, D. E. and Meshii, M.. J. Less Common Met, 140 (1988) 193.Google Scholar
17. Okamoto, P. R., Rehn, L. E., Pearson, J., Bhadra, R. and Grimsditch, M., J. Less Common Met, 140 (1988) 231.CrossRefGoogle Scholar
18. Pedraza, D. F., Rad. Eff., 112 (1990) 11.Google Scholar
19. Limoge, Y. and Barbu, A., Phys. Rev. B, 30 (1984) 2212.Google Scholar
20. Motta, A. T. and Olander, D. R., Acta Metall. Mater., 38 (1990) 2175.Google Scholar