Article contents
Microstructure of the MgH2 Synthesized by Hydriding Chemical Vapor Deposition
Published online by Cambridge University Press: 26 February 2011
Abstract
It is hardly achieved to prepare highly pure MgH2 by the conventional method of solid-gas reaction between solid magnesium and hydrogen; therefore, we proposed and succeeded to synthesize MgH2 by Hydriding Chemical Vapor Deposition (HCVD). Very interestingly, the HCVDed MgH2 was made of single crystals with fibrous figures; however, further detail of the HCVDed product had not been studied. Therefore the aim of this study was to examine the HCVDed MgH2 in hydrogen storage and to observe the microstructure of the HCVDed MgH2 after the hydrogen desorption and absorption.
As the results of Pressure-Composition-Isotherm (PCT) measurement, the HCVDed MgH2 reversibly absorbed and desorbed 7.6 mass% hydrogen, as much as the theoretical maximum hydrogen capacity of magnesium, without any activation treatment. The equilibrium pressure was slightly lower than the reported value. Before and after the PCT measurement, the HCVDed MgH2 did not showed noticeable difference in figure; however, MgHx, which was prepared dehydriding the HCVDed MgH2 in the PCT, showed significant difference in figure: It had zebra stripes in the SEM observation. This observation showed that the hydrogen storage and release went in the radious direction and the hydrogen diffusion was no more rate-limiting. The phase boundaries of Mg and MgH2 involving strain should affected on the plateau pressure in PCT.
- Type
- Research Article
- Information
- MRS Online Proceedings Library (OPL) , Volume 971: Symposium Z – Hydrogen Storage Technologies , 2006 , 0971-Z08-10
- Copyright
- Copyright © Materials Research Society 2007
References
REFERENCES
- 1
- Cited by