Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T01:37:51.538Z Has data issue: false hasContentIssue false

Microstructure of Sputter Deposited TiO2/SiO2 Multilayer Optical Coatings

Published online by Cambridge University Press:  21 March 2011

E. Sutter
Affiliation:
Department of Physics, Colorado School of Mines, Golden, CO 80401, USA
P. Sutter
Affiliation:
Department of Physics, Colorado School of Mines, Golden, CO 80401, USA
J.J. Moore
Affiliation:
Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401, USA
Get access

Abstract

The microstructure of TiO2/SiO2 multilayer optical filters has been investigated in detail by cross-sectional transmission electron microscopy and related to their optical properties and stability. The amorphous TiO2 layers in the as-deposited multilayers are found to consist of nanocolumns and intercolumnar regions with non-stoichiometric or lower density material. In humid ambients this microstructure absorbs moisture which causes a shift in the absorption edge of the filters. Upon annealing the TiO2layers are found to recrystallize into the low-temperature anatase modification which leads to significantly improved stability of the optical properties of the filters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Wang, X., Masumoto, H., Someno, Y., and Hirai, T., Appl. Phys. Lett. 72, 3264 (1998).Google Scholar
[2] Wang, X., Masumoto, H., Someno, Y., Chen, L., and Hirai, T., J. Vac. Sci. Technol. A 18, 933 (2000).Google Scholar
[3] Nakayama, T., J. Electrochem. Soc. 141, 237 (1994).Google Scholar
[4] Atanassov, G., Thielsch, R., and Popov, D., Thin Solid Films 225, 288 (1993).Google Scholar
[5] Wicaksana, D., Kobayashi, A., and Kinbara, A., J. Vac. Sci. Technol. A 10, 1479 (1992).Google Scholar
[6] Wiggins, M.D., Nelson, M.C., and Aita, C.R., J. Vac. Sci. Technol. A 14, 772 (1996).Google Scholar
[7] Atanassov, J., Turlo, J., Fu, J.K., and Dai, Y.S., Thin Solid Films 342, 83 (1999).Google Scholar
[8] Bennett, J.M., Pelletier, E., Albrand, G., Borgogno, J.P., Lazarides, B., Carniglia, C.K., Schmell, R.A., Allen, T.H., Tuttle-Hart, T., Guenther, K., and Saxer, A., Appl. Optics 28, 3303 (1989).Google Scholar
[9] Joseph, J. and Gagnaire, A., Thin Solid Films 103, 257 (1983).Google Scholar
[10] Kim, S.Y., Appl. Optics 35, 6703 (1996).Google Scholar
[11] Alvarez-Herrero, A., Fort, A. J., Guerrero, H., and Bernabeu, E., Thin Solid Films 349, 212 (1999).Google Scholar
[12] Smith, D. L., Thin-Film Deposition (McGraw-Hill, 1995).Google Scholar