Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T15:14:21.180Z Has data issue: false hasContentIssue false

Microstructure of Compositionally Modulated InAlAs

Published online by Cambridge University Press:  10 February 2011

R. D. Twesten
Affiliation:
Sandia National Laboratories, Albuquerque, NM. 87185-1056
J. Mirecki Millunchick
Affiliation:
Sandia National Laboratories, Albuquerque, NM. 87185-1056
S. P. Ahrenkielt
Affiliation:
National Renewable Energy Laboratory, Golden, CO. 80401
Yong Zhangt
Affiliation:
National Renewable Energy Laboratory, Golden, CO. 80401
S. R. Lee
Affiliation:
Sandia National Laboratories, Albuquerque, NM. 87185-1056
D. M. Follstaedt
Affiliation:
Sandia National Laboratories, Albuquerque, NM. 87185-1056
A. Mascarenhast
Affiliation:
Sandia National Laboratories, Albuquerque, NM. 87185-1056
E. D. Jones
Affiliation:
Sandia National Laboratories, Albuquerque, NM. 87185-1056
Get access

Abstract

We have observed spontaneous, lateral composition modulation in tensile InAlAs alloy films grown as short-period superlattices on InP (001). We have analyzed these films using transmission electron microscopy, x-ray reciprocal space mapping, and polarized photoluminescence spectroscopy. We find the growth front is nonplanar, exhibiting ∼2nm deep cusps aligned with the In-rich regions of the compositionally modulated films. In addition to the measured 15nm wavelength modulation in the [110] direction, a modulation of 30nm wavelength is seen in the orthogonal [110] direction. The photoluminescence from the modulated layer is strongly polarized and red shifted by 0.22eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See for example: Kapon, E., Proc. IEEE 80, 398 (1992).Google Scholar
2. Cheng, K. Y., Hsieh, K. C. and Baillargeon, J. N., Appl. Phys. Lett. 60, 2892 (1992).Google Scholar
3. Glas, F., J. Appl. Phys. 62, 3201 (1987).Google Scholar
4. Srolovitz, D. J., Acta Metall. 37, 621 (1989).Google Scholar
5. Guyer, J. E. and Voorhees, P. W., Phys. Rev. B 54, 11710 (1996).Google Scholar
6. Treacy, M. M. J., Gibson, J. M., and Howie, A., Phil. Mag. A51, 389 (1985).Google Scholar
7. Due to the weak nature of the (002) reflection, contrast reversals due to dynamic diffraction are not expected.Google Scholar
8. Gibson, J. M. and Treacy, M. M. J., Ultramicroscopy 14, 345 (1984).Google Scholar
9. Mascarenhas, A., Alonso, R. G., Homer, G. S., Froyen, S., Hsieh, K. C., and Cheng, K.Y., Superlattices and Microstructure 12, 57 (1992).Google Scholar
10. Since the film is Al-rich, we would expect a blue shift based on composition arguments only.Google Scholar
11. Mascarenhas, A., Zhang, Yong, Alonso, R.G. and Froyen, S., Solid State Comm. 100, 47 (1996).Google Scholar
12. Zhang, Yong and Mascarenhas, A, (to be published).Google Scholar
13. Lee, S.R., Doyle, B.L., Drummond, T.J., Medernach, J.W. and Schneider, R.P. Jr, in Advances in X-Ray Analysis Vol.38 edited by Predecki, P. et al. Plenum Press, New York, 1995), p. 201213.Google Scholar
14. Cahn, J. W., Acta Met. 9, 975 (1961).Google Scholar