Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:59:27.636Z Has data issue: false hasContentIssue false

Microstructure Evaluation for Time Dependent Nucleation Protocols in KJMA Kinetics

Published online by Cambridge University Press:  15 February 2011

Eloi Pineda
Affiliation:
E.U. d'Enginyeria Tècnica Agrícola (ESAB), Universitat Politècnica de Catalunya.Urgell 187, 08036-Barcelona, SPAIN Departament de Física Aplicada, Universitat Politècnica de Catalunya, Campus Nord UPC, Mòdul B4, 08034 - Barcelona, SPAIN, [email protected].
Daniel Crespo
Affiliation:
Departament de Física Aplicada, Universitat Politècnica de Catalunya, Campus Nord UPC, Mòdul B4, 08034 - Barcelona, SPAIN, [email protected].
Get access

Abstract

The microstructure developed in a first order phase transformation is obtained using a populational extension of the Kolmogorov, Johnson-Mehl and Avrami (KJMA) model, PKJMA. PKJMA allows one to determine the grain size distribution resulting from nucleation and growth kinetics. PKJMA is grounded on the mean field hypothesis that the free space around the growing grains is randomly distributed, independent of the grain radius. Although this approach is perfectly valid for the case of constant nucleation, a detailed analysis of the model shows that this hypothesis does not hold in the case of time dependent nucleation protocols or pre-existing nuclei. In this work, the PKJMA model has been improved by estimating the average free surface around the grains as a function of their radius and the time elapsed since nucleation. The resulting model gives quantitative determination of the microstructure developed under a variety of nucleation and growth processes: pre-existing nuclei, constant nucleation, and the combination of both mechanisms, constant and radius dependent growth rates. Comparison with Monte Carlo simulations, showing a quantitative agreement will be presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kolmogorov, A. N., Bull. Acad. Sci. USSR, Phys. Ser. 1, 355 (1937).Google Scholar
2. Johnson, W. A., Mehl, P. A., Trans. Am. Inst. Mining and Metallurgical Engineers 135, 416 (1939).Google Scholar
3. Avrami, M., J. Chem. Phys. 7, 1103 (1939); 8, 212 (1940); 9, 177 (1941).Google Scholar
4. Crespo, D. and Pradell, T., Phys. Rev. B 54, 3101 (1996).Google Scholar
5. Crespo, D., Pradell, T., Clavaguera-Mora, M. T. and Clavaguera, N., Phys. Rev B 55, 3435 (1997).Google Scholar
6. Pineda, E. and Crespo, D., Phys. Rev. B 60, 3104 (1999).Google Scholar
7. Christian, W., The Theory of Transformations in Metals and Alloys, Pergamon Press, Oxford, 1975.Google Scholar