Published online by Cambridge University Press: 01 February 2011
The characterization of void-related microstructure in amorphous and microcrystalline Ge:H films is reported. Various methods are applied including effusion measurements of hydrogen and of implanted helium and neon, measurements of the infrared absorption of C-H bonds due to in-diffusion of contaminants and of the stretching modes of bonded hydrogen. Several microstructure effects like interconnected voids and isolated voids and a quite different material homogeneity are detected and are found to depend on the preparation conditions. Amorphous Ge:H can be prepared with a (largely) homogeneous structure while microcrystalline Ge:H tends to consist of compact grains surrounded by more or less open voids. Enhanced substrate temperatures (Ts ≈ 250°C) favour the growth of more compact material.