Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T02:44:28.925Z Has data issue: false hasContentIssue false

The Microstructure and Wear Behavior of Cr- and W-DLC Coatings Sputter-Deposited onto AISI 52100 Substrates as Elucidated using Focused-Ion-Beam SEM

Published online by Cambridge University Press:  17 March 2011

Clark V. Cooper
Affiliation:
United Technologies Research Center, East Hartford, CT 06118-1127, U.S.A.
Rizhi Wang
Affiliation:
Princeton University, Princeton Materials Institute, Princeton, NJ 08540-5211, U.S.A.
Hyung K. Yoon
Affiliation:
Caterpillar Inc., Peoria, IL 61656-1875, U.S.A.
Mahmoud A. Taher
Affiliation:
Caterpillar Inc., Peoria, IL 61656-1875, U.S.A.
Get access

Abstract

Magnetron sputtering has been used to deposit metal-containing, diamond-like-carbon (Me-DLC) coatings onto substrates composed of AISI 52100 steel in quenched-and-tempered condition. Coatings of two distinctly different compositions, one containing Was the metallic constituent and the second containing Cr, have been deposited in a plasma containing Ar and C2H2.Interrupted, unidirectional sliding experiments of the block-on-ring type have been conducted in a poly-alpha-olefin (PAO) lubricant at a load of 667 N for discrete numbers of cycles, N, of between 10 and 1000. Focused-ion-beam, scanning electron microscopy (FIB/SEM) has been applied to characterize the morphology of as-deposited and worn Me-DLC coatings. This technique has resulted in the determination that the Cr-DLC coating, deposited using the investigated processing parameters, fractures in a brittle manner through the formation and propagation of “tunnel cracks,” which unzip in a direction parallel to the grinding direction outside of the region of contact. Conversely, the application of specific processing parameters to deposit W-DLC produces a coating that wears by gradual recession, consistent with polishing wear. First-principles-based analysis shows that the state of residual stress is critically important in the behavior of the coating.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dimigen, H., Hubsch, H., and Memming, R., Appl. Phys. Lett. 50, 1056 (1987).Google Scholar
2. Lee, K. R., Eun, K. Y., and Kim, K. M., Surf. Coat. Technol. 77, 786 (1995).Google Scholar
3. Voevodin, A. A., Prasad, S. V., and Zabinski, J. S., J. Appl. Phys. 82, 855 (1997).Google Scholar
4. Donnet, C., Surf. Coat. Technol. 101, 180 (1998).Google Scholar
5. Grill, A., Diamond-like carbon: state of the art, Diamond Relat. Mater. 8, 428 (1999).Google Scholar
6. Cui, F. Z. and Li, D.J., Surf. Coat. Technol. 131, 481 (2000).Google Scholar
7. Wei, R., Wilbur, P. J., and Liston, M. J., Diamond Relat. Mater. 2, 898 (1993).Google Scholar
8. Grill, A., Surf. Coat. Technol. 94–95, 507 (1997).Google Scholar
9. Heimberg, J. A., Wahl, K. J., Singer, I. L., and Erdemir, A., Appl. Phys. Lett. 78, 2449 (2001).Google Scholar
10. Gille, G. and Rau, B., Thin Solid Films 120, 109 (1984).Google Scholar
11. Nir, D., Thin Solid Films 112, 41 (1984).Google Scholar
12. Seth, J., Padiyath, R., and Babu, S. V., J. Vac. Sci. Technol. A 10, 284 (1992).Google Scholar
13. Thomsen, N. B., Fischer-Cripps, A. C., and Swain, M. V., Thin Solid Films 332, 180 (1998).Google Scholar
14. Peng, X. L. and Clyne, T. W., Thin Solid Films 312, 219 (1998).Google Scholar
15. Wang, J. S., Sugimura, Y., Evans, A. G., and Tredway, W. K., Thin Solid Films 325, 163 (1998).Google Scholar
16. Harris, S. J. and Weiner, A. M., Wear 223, 31 (1998).Google Scholar
17. Meng, W. J. and Gillispie, B. A., J. Appl. Phys. 84, 4314 (1998).Google Scholar
18. Bewilogua, K., Cooper, C. V., Specht, C., Schroder, J., Wittorf, R., and Grischke, M., Surf. Coat. Technol. 127, 224 (2000).Google Scholar
19. Cao, D. M., Feng, B., Meng, W. J., Rehn, L. E., Baldo, P. M., and Khonsari, M. M., Appl. Phys. Lett. 79, 329 (2001).Google Scholar
20. Dimigen, H. and Klages, C.-P., Surf. Coat. Technol. 49, 543 (1991).Google Scholar
21. Moon, M. Y., Wang, R., and Evans, A. G., unpublished research (2001).Google Scholar
22. Standard test method for ranking resistance of materials to sliding wear using block-on-ring wear test, ASTM Standard G 77-98, in 1999 Annual Book of ASTM Standards, Volume 03.02, ASTM, West Conshohocken, PA, 1999, pp. 318331.Google Scholar
23. Cho, S., Lee, K., Eun, K. Y., Hahn, J. H., and Ko, D., Thin Solid Films 341, 207 (1999).Google Scholar
24. Cooper, C. V., Beetz, C. P. Jr, Buchholtz, B. W., Wilbur, P. J., andWei, R., Diamond Relat. Mater. 3, 534 (1994).Google Scholar
25. Cooper, C. V., Holiday, P., and Matthews, A., Surf. Coat. Technol. 63, 129 (1994).Google Scholar
26. Wang, R., Mercer, C., Evans, A. G., Cooper, C. V., and Yoon, H. K., submitted to Diamond Relat. Mater.Google Scholar