Published online by Cambridge University Press: 10 February 2011
The evolution of crystallographic texture, grain size and surface morphology in magnetron sputter deposited Al-0.5wt.% Cu polycrystalline thin films is reported as a function of film thickness for SiO2 and SiO2/Ti underlayers for several deposition rates. Regardless of the underlayer type, the initial ≈ 10 nm of the Al-Cu films is nearly randomly oriented, with the films developing a (111) out-of-plane texture which increases in strength with thickness during deposition. The AlCu films on sputtered Ti underlayers developed an exact (111) fiber orientation while Al-Cu films on oxide substrates were offset ≈ 5° from exact fiber orientation. Higher deposition rates were found to result in slightly better (111) textured 20 nm AlCu films. The surface morphology of films, determined by Atomic Force Microscopy (AFM), revealed two regimes of average roughness (Rrms) evolution during deposition. Rrms decreased early in the deposition process, followed by a roughening regime where Rrms increased with thickness. These results are discussed in terms of mechanisms such as grain growth, which help to determine microstructure development during film formation from the vapor.