Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T07:34:58.219Z Has data issue: false hasContentIssue false

Microstructure and Ferroelectric Characteristics of Ultra-Thin BaTiO3 Films

Published online by Cambridge University Press:  28 July 2011

Y. Drezner
Affiliation:
Department of Materials Engineering, Technion, Haifa 32000, Israel
S. Berger
Affiliation:
Department of Materials Engineering, Technion, Haifa 32000, Israel
Get access

Abstract

Microstructure studies of ultra-thin BaTiO3 thin films (2-10 nm thick) show nano-domains having a width as small as one unit cell. Only 180° nano-domains are formed in multi-domains structures. The domain-boundaries are formed at {001} twin boundaries. Most of the domains are oriented in parallel to the film plane but out-of-plane orientations are also observed. The films exhibit ferroelectric behavior characterized by a polarization hysteresis loop and a relatively fast switching time. A remnant polarization of about 0.5 μC/cm2 and coercive field of 2.7 V/cm were measured in parallel to the film plane. Temperature-dependent measurements show two peaks of the dielectric constant at about 60°C and 115°C. These peaks are attributed to two transition temperatures associated with the orientation of the nano-domains relative to the film plane and stress.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chattopanhuay, S., Ayyub, P., Palkar, V.R., and Multani, M., Phys. Rev., B 52, 13177 (1995).Google Scholar
2. Tybell, T., Ahn, C.H., and Triscone, J-M., Applied Phys. Lett., 75, 856 (1999).Google Scholar
3. Streiffer, S.K., Eastman, J.A., Fong, D.D., Thompson, C., Munkholm, A., Murty, M.V. Ramana, Auciello, O., Bai, G.R. and Stephenson, G.B., Phys. Rev. Lett., 89(6), 67601 (2002).Google Scholar
4. Zhong, W., Jiang, B., Zhang, P., Ma, J., Chen, H., Yang, Z., and Li, L., J. Phys. Condens. Matter 5, 2619 (1993).Google Scholar
5. Drezner, Y. and Berger, S., J. Appl. Phys. 94(10), 6774–8 (2003).Google Scholar
6. Blinov, L.M., Fridkin, V.M., Palto, S.P., Bune, A.V., Dowben, P.A., Ducharme, S., Uspekhi Fizicheskikh Nauk 43(3) 243257 (2000).Google Scholar
7. Zhang, J., Yin, Z., Zhang, M.-S., and Scott, J.F., Solid State Commun. 118 241 (2001).Google Scholar
8. Pertsev, N.A., Zembilgotov, A.G., and Tagantsev, A.K., Phys.Rev.Lett. 80, 1988 (1998).Google Scholar
9. Scott, J.F., Duiker, H.M., Beale, P.D., Pouligny, B., Dimmler, K., Parris, M., Butler, D., Eaton, S., Physica B 150 160167 (1988).Google Scholar
10. Yu, T., Chen, Y-F., Liu, Z-G., et al. Mater. Lett., 26, 73 (1996).Google Scholar
11. Edington, J.W.Practicle Electron Microscopy in Materials Science” vol. 2, Herndon, Va. Techbooks 63 (1976).Google Scholar
12. Jong, H., Choi, S.S and Hahn, T.S., Jap. J. Appl. Phys., part 1, 36(11), 6937 (1997).Google Scholar
13. Wook, K., Young, H., Hahn, T.S., Choi, S.S., and Chung, S.J., Jap. J. Appl. Phys., part 2: letters, 35(6A), L699–L702 (1996).Google Scholar
14. Eibl, O., Pongratz, P., Skalicky, P., Phil. Mag. B, 57(4), 521 (1988).Google Scholar
15. Jona, F., and Shirane, G., “Ferroelectric Crystals”, p.120, (1962), Pergamon- Press, New York.Google Scholar
16. Huang, G-F., and Berger, S., J. Appl. Phys., 93(5), 28552860 (2003).Google Scholar
17. Zhang, J., Yin, Z., Zhang, M.S. and Scott, J.F., Solid State Comm., 118, 241 (2001).Google Scholar
18. Victor, P., Ranjith, R., and Krupanidhi, S.B., J. Appl. Phys. 94(12) 7702–9 (2003).Google Scholar
19. Ishibashi, Y., Takagi, J., J. Phys. Soc. Jap. Vol. 31(2) (1971) 506510.Google Scholar
20. Dimmier, K., Parris, M., Butler, D., Eaton, S., Pouligny, B., Scott, J.F., Ishibashi, Y., J. Appl. Phys. 61(12) (1987) 54675470.Google Scholar
21. Scott, J.F., “Ferroelectric Memories”, Springer-Verlag, Berlin (2000) 121132.Google Scholar