Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T09:31:41.013Z Has data issue: false hasContentIssue false

Microstructural Study of Ultraviolet-Assisted Pulse Laser depoisted Indium Tin Oxide Films

Published online by Cambridge University Press:  01 February 2011

Nabil D. Bassim
Affiliation:
Department of Materials Science and Engineering, University of Florida Gainesville, FL 32611, U.S.A.
Valentin Craciun
Affiliation:
Department of Materials Science and Engineering, University of Florida Gainesville, FL 32611, U.S.A.
Doina Craciun
Affiliation:
National Institute for Laser, Plasma and Radiation Physics, Bucharest, Romania
Rajiv K. Singh
Affiliation:
National Institute for Laser, Plasma and Radiation Physics, Bucharest, Romania
Get access

Abstract

Indium tin oxide is one of the most used transparent conducting oxides. In order to reduce the processing thermal budget and enhance compatibility of these films for such applications as transparent electrodes for solar cells and flat panel displays, lower deposition temperatures are desirable. The addition of a non-thermal energy source during deposition, in this case, a mercury lamp, has the ability to lower the required substrate temperature during processing while increasing the oxygen content of the deposited film through the added contribution of ionized species into the deposited material. We investigated the microstructure of UV-assisted pulsed laser deposited indium tin oxide films. Comparisons between the UV and non-UV films were made in order to judge the effectiveness of the UV radiation in achieving desirable properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]. Wulff, H., Quaas, M., Steffen, H., Thin Solid Films 355-356 (1999) 395.Google Scholar
[2]. Huang, J-L., Jah, Y-T., Yau, B-S., Chen, C-Y., Lu, H-H., Thin Solid Films 370 (2000) 33.Google Scholar
[3]. Yang, Z. W., Han, S. H., Yang, T. L., Ye, L., Zhang, D. H., Ma, H. L., Cheng, C. F., Thin Solid Films 366 (2000) 4.Google Scholar
[4]. Shin, J. H., Shin, S. H., Park, J. I., Kim, H. H., J. Appl. Phys. 89 (2001) 5199.Google Scholar
[5]. Ayagi, Y., Hanamoto, K., Suzuki, H., Katoh, T., Sasaki, M., Imai, S., Tsudagawa, M., Nakayama, Y., Miki, H., Jpn. J. Appl. Phys. 38 (1999) 6846 Google Scholar
[6]. Laux, S., Kaiser, N., Zoller, A., Gotzelmann, R., Lauth, H., Bernitzki, H., Thin Solid Films, 335 (1998) 1 Google Scholar
[7]. Paine, D.C., Whitson, T., Janiac, D., Beresford, R., Yang, C.O., Lewis, B. J. Appl. Phys. 85 (1999) 8445 Google Scholar
[8]. Ma, J. H., Wu, G. M., Shen, J., and Wang, J., J. Inorg. Mat. 16 (2001) 1174.Google Scholar
[9]. Nishizawa, K., Suzuki, K., Miki, T., Kato, K., Key Engr. Mat. 7 (2002) 145.Google Scholar
[10] Wengenmair, H., Gerlach, J. W., Preckwinkel, U., Stritzker, B., and Rauschenbach, B., Appl. Surf. Sci. 99, 313 (1996).Google Scholar
[11]. Craciun, V., Lambers, E. S., Bassim, N. D., Singh, R.K., and Craciun, D., J. Mater. Res. 15 (2000) 488.Google Scholar
[12]. Craciun, V. 1, Chiritescu, C. 2, Kelly, F., Singh, R.K., J. Opto. Adv. Mat., 4, (2002) 21 Google Scholar
[13]. Howard, J.M., Craciun, V., Bassim, N. D., Essary, C., Singh, R.K., to be publishedGoogle Scholar