Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T17:45:48.476Z Has data issue: false hasContentIssue false

Microstructural Studies of Ferroelectric Bi2VO5.5 Thin Films With LaNiO3 Electrodes

Published online by Cambridge University Press:  15 February 2011

D. Prasad Beesabathina
Affiliation:
Center for Superconductivity Research and Materials and Nuclear Engineering Department, University of Maryland, College Prak, MD 20742.
L. Salmanca-Riba
Affiliation:
Center for Superconductivity Research and Materials and Nuclear Engineering Department, University of Maryland, College Prak, MD 20742.
M. S. Hegde
Affiliation:
Indian Institute of Science, Bangalore, India 560012.
K. M. Satyalakshmi
Affiliation:
Indian Institute of Science, Bangalore, India 560012.
K. V. R. Prasad
Affiliation:
Indian Institute of Science, Bangalore, India 560012.
K. B. R. Varma
Affiliation:
Indian Institute of Science, Bangalore, India 560012.
Get access

Abstract

Thin films of Bi2VO5.5 (BVO), a vanadium analog of the n = I member of the Aurivillius family, have been prepared by pulsed laser deposition. The BVO films grow along the [001] direction on LaNiO3(LNO) and YBa2Cu3O7 (YBCO) electrode buffer layers on LaA- IO3(LAO) substrates as obtained from X-ray diffraction studies. The microstructure of the films and of the interfaces within the film and between the film and the substrate were characterized using transmission electron microscopy. The in-plane epitaxial relationship of the rhombohedral LNO on perovskite LAO was [100] LNO // [100] LAO and [001] LNO // [001] LAO. High resolution lattice images showed a sharp interface between LNO and LAO. However, the LNO film is twinned with a preferred orientation along the growth direction. The BVO layer is single crystalline on both LNO/LAO and YBCO/LAO with the caxis parallel to the growth direction except for a thin layer of about 400 Å at the interface which is polycrystalline.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Scott, J. F. and Arujo, D. A. Paz de, Science 256, 1400 (1989).Google Scholar
2. Francombe, M. H. and Krishnaswamy, S. V., J. Vac. Sci. Technol. A8, 1382 (1990).Google Scholar
3. Okuyama, M. and Hamakawa, Y., Ferroelectrics 63, 243 (1985).Google Scholar
4. Kawaguchi, T., Adachi, H., Setsume, K., Yamazaki, O., and Wasa, K., Appl. Opt. 23, 2187 (1984).Google Scholar
5. Ramesh, R., Inam, A., Wilkins, B., Chan, W. K., Sands, T., Tarascon, J. M., Fork, D. K., Geballe, T. H., Evans, J., and Bullington, J., Appl. Phys. Lett. 59, 1782 (1991).Google Scholar
6. Jo, W., Yi, G-C., Noh, T. W., Ko, D-K., Cho, Y. S., and Kwun, S-I., Appl. Phys. Lett. 61, 1516 (1992).Google Scholar
7. Varma, K. B. R., Subbanna, G. N., Row, T. N. Guru and Rao, C. N. R., J. Mater. Res. 5(11), 1 (1990).Google Scholar
8. Ramesh, R., Inam, A., Chan, W. K., Wilkins, B., Mayers, K., Remschnig, K., Hart, K. L., and Tarascon, J. M., Science 252, 944 (1991).Google Scholar
9. Boikov, Yu. A., Esayan, S. K., Ivanov, Z. G., Brorsson, G., Claeson, T., Lee, J. and Safari, A., Appl. Phys. Lett. 61, 528 (1992).Google Scholar
10. Eom, C. B., Cava, R. J., Fleming, R. M., Phillips, Julia M., Van Dover, R. B., Marshall, J. H., Hsu, J. W. P., Krajewski, J. J., and Peck, W. F. Jr., Science 258, 1766 (1992).Google Scholar
11. Satyalakshmi, K. M., Mallya, R. M., Ramanathan, K. V., Wu, X. D., Brainard, B., Gautier, D. C., Vasanthacharya, N. Y., and Hegde, M. S., Appl. Phys. Lett. 62, 1233(1993).Google Scholar
12. Prasad, K. V. R., Varma, K. B. R., Raju, A. R., Satyalakshmi, K. M., Mallya, R. M., and Hegde, M. S. (to be published).Google Scholar
13. Blinovskov, Ya. N. and Fotiev, A. A., Russian J. Inorg. Chem. 32, 145 (1987).Google Scholar
14. Wuzong, Zhou, J. Solid State Chem. 76, 290 (1988).Google Scholar