Published online by Cambridge University Press: 26 September 2011
A unified physically-based representation of the microstructure in martensitic steels is developed to investigate its effects on the initiation and evolution of failure modes at different physical scales that occur due to a myriad of factors, such as texture, grain size and shape, grain heterogeneous microstructures, and grain boundary (GB) misorientations and distributions. The microstructural formulation is based on a dislocation-density based multiple-slip crystal plasticity model that accounts for variant distributions, orientations, and morphologies. This formulation is coupled to specialized finite-element methods to predict the scale-dependent heterogeneous microstructure, and failure phenomena such as shearstrain localization, and void coalescence.