Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:54:15.627Z Has data issue: false hasContentIssue false

Microstructural Evolution and Order-Disorder Transitions in Mesoporous Silica Films Studied by FTIR Spectroscopy

Published online by Cambridge University Press:  01 February 2011

Plinio Innocenzi
Affiliation:
Dipartimento di Ingegneria Meccanica, settore materiali, Università di Padova, via Marzolo 9, 35131 Padova, Italy
Paolo Falcaro
Affiliation:
Dipartimento di Ingegneria Meccanica, settore materiali, Università di Padova, via Marzolo 9, 35131 Padova, Italy
David Grosso
Affiliation:
Chimie de la Matière Condensée, Université Paris 6 - T54 -E5, 4 place Jussieu, 75252 Paris Cedex 05 - France
Florence Babonneau
Affiliation:
Chimie de la Matière Condensée, Université Paris 6 - T54 -E5, 4 place Jussieu, 75252 Paris Cedex 05 - France
Get access

Abstract

Silica mesoporous thin films have been synthesised with a self-assembling process employing cetyltrimethylammonium bromide as the organic template and tetraethyl orthosilicate as the silica source. Mesoporous films with Pm3n cubic phase phases have been obtained and the films have been thermally treated in air with a progressive heating schedule from asdeposited up to 1000°C. The evolution of the microstructure has been studied with transmission Fourier transformed infrared (FTIR) spectroscopy.

FTIR spectra of the as-deposited films have shown the presence of cyclic species, which at temperatures larger than 350°C have been no more observed. In the 1000-1300 cm-1 region several overlapped absorption bands have been detected. In particular, the pair LO3-TO3, the cyclic species absorption bands and the pair LO4-TO4 have been resolved. These last bands, in particular, are associated with disorder-order transitions in the silica microstructure. These disorder-induced optical modes are due to the large interface area and related to bond strains.

The evolution of the bands in the 1000-1300 cm-1 region has been followed with the Berreman configuration, performing the transmission FTIR analysis at 45° with respect to the normal incidence angle. The LO3 band, which in silica sol-gel films is indicative of the network condensation and is activated by scattering of the light in the pores, was resolved as a single sharp band from 250°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gnado, J., Dhamelincourt, P., Pelegris, C., Traisnel, M. and Mayot, A. Le Maguer, J.Non- Cryst. Solids 208, 247 (1996).Google Scholar
2. Matos, M.C., Ilharco, L.M. and Almeida, R.M., J.Non-Cryst.Solids 147&148, 232 (1992).Google Scholar
3. Wood, D.L. and Rabinovich, E.M., J.Non-Cryst.Solids 82, 171 (1986).Google Scholar
4. Wood, D.L. and Rabinovich, E.M., Appl.Spectrosc., 43, 263 (1989).Google Scholar
5. Almeida, R.M., Guiton, T.A. and Pantano, G.C., J.Non-Cryst.Solids 121, 193 (1990).Google Scholar
6. Bertoluzza, A., Fagnano, C., Morelli, M.A., Gottardi, V., and Guglielmi, M., J.Non- Cryst.Solids 48, 117 (1982).Google Scholar
7. Yoshino, H., Kamiya, K. and Nasu, H., J.Non-Cryst.Solids 126, 68 (1990).Google Scholar
8. Klotz, M., Albouy, P.A, Ayral, A., Menager, C., Grosso, D., Lee, A. Van der, Cabuil, V., Babonneau, F., and Guizard, C., Chem.Mater. 1, 1721 (2000).Google Scholar
9. Grosso, D., Balkenende, A.R., Albouy, P.A., Ayral, A., Amenitsch, H., Babonneau, F., Chem.Mater. 13, 1848 (2001).Google Scholar
10. S, K.H. Kung, Hayes, K.F., Langmuir 9, 263 (1993).Google Scholar
11. Galeener, F.L., Phys.Rev.B 19, 4292 (1979).Google Scholar
12. Yoshino, H., Kamiya, K. and Nasu, H., J.Non-Cryst.Solids 126, 68 (1990).Google Scholar
13. Hayakawa, S. and Hench, L.L., J.Non-Cryst.Solids 262, 264 (2000).Google Scholar
15. Almeida, R.M. and Pantano, C.G., J.Appl.Phys., 68, 4225 (1990).Google Scholar
16. Fidalgo, A., Nunes, T.G., Ilharco, L.M., J.Sol-Gel Sci.Techn. 19, 403 (2000).Google Scholar
17. Ying, J.Y. and Benziger, J.B., J.Non-Cryst.Solids 147&148 (1992) 222 Google Scholar
18. Van Beck, J.J., Seykens, D., J.Jansen, B.H. and Schuiling, R.D., J.Non-Cryst.Solids 134, 14 (1991).Google Scholar
19. Sen, P.N. and Thorpe, M.F., Phys. Rev. B 15, 4030 (1977).Google Scholar
20. Galeener, F.L., Phys.Rev. B 19, 4292 (1979).Google Scholar
21. Berreman, D.W., Phys. Rev. 130, 2193 (1963).Google Scholar
22. Primeau, N., Vautey, C. and Langlet, M., Thin Solid Films 310, 47 (1997).Google Scholar
23. Kirk, C.T., Phys. Rev. B 38, 1255 (1988).Google Scholar
24. Galeener, F.L. and Lucovsky, G., Phys. Rev. Lett. 37, 1474 (1976).Google Scholar
25. Lange, P., J.Appl.Phys. 66, 201 (1989).Google Scholar
26. Lange, P. and Windrabcke, W., Thin Solid Films 174, 159 (1989).Google Scholar
27. Lange, P., Schnakenberg, U., Ullerich, S. and Schliwinski, H.J., J.Appl.Phys. 68, 3532 (1990)Google Scholar
28. Perez-Robles, J.F., Garcia-Cerda, L.A., Espinoza-Beltran, F.J., Yanez-Limon, M., Gonzalez-Hernandez, J., Vorobiev, Y.V., Parga-Torres, J.R., Ruiz, F. and Mendez-Nonell, J., Phys.Stat.Sol. 172, 49 (1999).Google Scholar
29. Keene, M.T.J., Gougeon, R.D.M., Denoyel, R., Harris, R.K., Rouquerol, J., Llwellyn, P.L., J.Mater.Chem. 9, 2843 (1999).Google Scholar