Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-04T21:27:50.815Z Has data issue: false hasContentIssue false

Microstructural Evolution and Densification Kinetics During Sintering of Oxide-Dispersed Tungsten Alloys

Published online by Cambridge University Press:  25 February 2011

Li-Chyong Chen
Affiliation:
GE Corporate Research and Development, Schenectady, NY 12301.
Bernard P. Bewlay
Affiliation:
GE Corporate Research and Development, Schenectady, NY 12301.
Get access

Abstract

The present paper discusses the role of ceria and hafnia dispersions in tungsten alloys on the microstructural evolution and densification kinetics during sintering. Densification kinetics were measured using dilatometry, and microstructural changes were examined using scanning electron microscopy and Auger electron spectroscopy. Activation energies for sintering were obtained by analyzing the shift of the iso-density points as a function of linear heating rate. Sintering of both tungsten and ceria-dispersed tungsten were found to be controlled by grain boundary diffusion, with apparent activation energies of 318±21 and 385±15 kJ/mole, respectively. However, densification of hafnia-dispersed tungsten is not controlled by a single mechanism. Under different conditions hafnia can enhance or retard densification; the mechanisms associated with this behavior are discussed. In particular, the relationships between sintering behavior and the tungsten-ceria and tungsten-hafnia interfaces are examined. Comparison with conventional oxide dispersoids, such as thoria, will also be made.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Coolidge, W. D., Proc. Am. Inst. Elec. Eng., 961 (1910).Google Scholar
2. Sell, H. G., Morcom, W. R., King, G. W., and Cerulli, N. F., AFML-TR-65-407, Part 1 (1965), and Part H (1966).Google Scholar
3. Bukhanovskii, V. V., Kharchenko, V. K., Kravchenko, V. S., Or'shanskii, A. B., Golovin, S. A., and Nikol'skii, V. N., Soviet Powder Metallurgy and Metal Ceramics 24, 652 (1985).CrossRefGoogle Scholar
4. Barwa, E. and Schwab, R., Schweissen Schneiden 40(1), 24 (1988).Google Scholar
5. Matsuda, F., Ushio, M., and Kumagai, T., Weld. Int. 3(6), 497 (1989); Q. J. Jpn, Weld. Soc. 6(2), 3(1988); Yosetsu Gakkai Ronbunshu 6(2), 205(1988); Trans. JWRI 16(2), 247(1987); Trans. JWRI 15(1), 13 (1986).CrossRefGoogle Scholar
6. Ushio, M., Sadek, A. A., and Matsuda, F., Plasma Chem. Plasma Process 11, 81 (1991).Google Scholar
7. Chen, L. C., Lou, K. A., and Bewlay, B. P., Proceedings of the Third nt. Conference on Powder Metallurgy in Aerospace, Defense and Demanding Applications, Froes, F. H., ed., 111 (1993).Google Scholar
8. Kuczynski, G. C. and Lavendel, H. W., Int. J. of Powder Metallurgy 5 [4], 19 (1969).Google Scholar
9. Tikkanen, M. H., Rosell, B. O., and Wiberg, O., Powder Met. 10, 49 (1962).Google Scholar
10. Johnson, D. L., J. Mater. Sci. 11, 2312 (1976).Google Scholar
11. Walter, J. L. and Seybolt, A. U., Trans. TMS-AIME 245, 1093 (1969).Google Scholar
12. Chen, L. C., Int. J. Refractory Metals & Hard Mater. (in press).Google Scholar
13. Charles, R. J. and Prochazka, S., J. Mater. and Engin. Sci. (in press).Google Scholar
14. Kothari, N. C., J. Less Common Metals 5, 140 (1963).Google Scholar
15. Kothari, N. C., Physics of Sintering, 3, 85 (1971).Google Scholar
16. Vasilos, T. and Smith, J. T., J. Appl. Phys. 35 [1], 215 (1964).CrossRefGoogle Scholar
17. Vasil'ev, V. P. and Chernomorchenko, S. C., Zavodsk. Lab. 22,688 (1956); W. Danneberg, Metall. 15, 977 (1961); R. L. Andelin, J. D. Knight and M. Kahn, Trans.-AIME 233, 19 (1965).Google Scholar
18. Kreider, K. G. and Bruggeman, G., Trans.-AIME 239, 1222 (1967).Google Scholar
19. Barbour, J. P., et al. , Phys. Rev. 117, 1452 (1960); B. C. Allen, Trans.-AIME 227, 1175 (1963); B. C. Allen, Trans.-AIME 236, 915 (1966); D. M. Moon and R. C. Koo, Met. Trans. 2, 2115 (1971).Google Scholar
20. Allen, B. C., J. Less-Common Metals 29, 263 (1972).CrossRefGoogle Scholar