Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:31:37.592Z Has data issue: false hasContentIssue false

Microstructural Development Of thin CoCrTa Films on Cr Underlayers

Published online by Cambridge University Press:  10 February 2011

C.A. Ross
Affiliation:
Dept. Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge MA 02139, ([email protected])
F.M. Ross
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley CA 94720. IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, ([email protected])
Get access

Abstract

The structure of 2.8 – 60nm thick films of CoCrTa sputtered onto a 50nm Cr underlayer at 250°C was studied using atomic resolution microscopy. The Cr grows with a (200) orientation and the CoCrTa grows epitaxially with the [0002] axis in the film plane. The thinnest films have a discontinuous microstructure with several CoCrTa nuclei forming on each Cr grain, with slight misalignment from the exact Pitsch-Schrader orientation relation. The CoCrTa grains coalesce as the film thickness exceeds lOnm and there is evidence for stacking faults at all film thicknesses. For most films the magnetic switching volumes are of similar size to the physical grain volume, suggesting that the entire grain volume participates in magnetic switching.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lazzari, J.P., Melnick, I. and Randet, D., IEEE Trans. Mag 5 955 1969 Google Scholar
2. Feng, Y.C., Laughlin, D.E. and Lambeth, D.N., Mat. Res. Soc. Symp. Proc. 313 p357 1991 Google Scholar
3. Kim, M.R., Guruswamy, S. and Johnson, K.E., IEEE Trans. Mag. 29 3688 1993 Google Scholar
4. Nolan, T. P., Sinclair, R., Ranjan, R. and Yamashita, T., J. Appl. Phys. 73 5566 1993 Google Scholar
5. Laughlin, D.E. and Wong, B.Y., IEEE Trans. Mag 27(6) 4713 1991 Google Scholar
6. Nolan, T.P., Sinclair, R., Ranjan, R. and Yamashita, T., J. Appl. Phys. 73 5117 1993 Google Scholar
7. Wong, B.Y. and Laughlin, D.E., Appl. Phys. Lett. 61 2533 1992 Google Scholar
8. Wong, B.Y., Laughlin, D.E. and Lambeth, D.N., IEEE Trans. Mag. 27 4733 1991 Google Scholar
9. Wong, B.Y., Shen, Y. and Laughlin, D.E., J. Appl. Phys. 73 418 1993 Google Scholar
10. copyright Total Resolution, 20 Florida Ave, Berkeley CA 94707Google Scholar
11. Tang, L., Thomas, G., Khan, M.R., Duan, S.L. and Heiman, N., J. Appl. Phys. 69 5166 1991 Google Scholar
12. Shen, Y., Wong, B.Y. and Laughlin, D.E., J. Appl. Phys. 76 8174 1994 Google Scholar
13. Ross, C.A., Ross, F. M., Bertero, G. and Tang, K., submitted to IEEE Trans. Mag.Google Scholar
14. Lu, P.-L. and Charap, S.H., J. Appl. Phys. 75 5768 1994 Google Scholar
15. Sharrock, M.P., J. Appl. Phys. 76 6413 1994 Google Scholar
16. Chantrell, R.W., Coverdale, G.N. and O'Grady, K., J. Phys. D: Appl. Phys. 21 1469 1988 Google Scholar
17. Chantrell, R.W., J. Magn. Magn. Mats. 95 365 1991 Google Scholar
18. El-Hilo, M., de Witte, A.M., O'Grady, K. and Chantrell, R.W., J. Magn. Magn. Mats. 117 L307 1992 Google Scholar
19. Chantrell, R.W., Lyberatos, A., El-Hilo, M. and O'Grady, K., J. Appl. Phys. 76 6407 1994 Google Scholar
20. Luo, C.P., Shan, Z.S. and Sellmyer, D.J., J. Appl. Phys. 79 4899 1996 Google Scholar
21. Pan, T. and Spratt, G.W.D., IEEE Trans. Mag. 32 3623 1996 Google Scholar
22. Chen, Y.J., Tang, L., Laughlin, D.E. and Kryder, M. H., IEEE Trans. Mag. 32 3608 1996 Google Scholar
23. Farrant, S.H., Crew, D.C. and Street, R. IEEE Trans. Mag. 32 4225 1996 Google Scholar
24. Chantrell, R.W. J. Phys F 16 L145 1986 Google Scholar