Published online by Cambridge University Press: 22 February 2011
Diffusion-induced grain boundary migration (DIGM) is a common, but only recently discovered low temperature phenomenon that results in high rates of both chemical mixing (or unmixing) and grain boundary migration. DIGM is found in many situations where chemical heterogeneities lead to diffusion. For example, DIGM is observed during diffusion and compound formation in polycrystalline multilayer contact systems produced by low temperature deposition techniques. The diffusional mixing along the moving grain boundary is high, localized, and results in a distinctive composition profile behind the moving interface. Theory has indicated, and experiments have confirmed, which conditions lead to DIGM and which conditions suppress it. The microstructural changes can result in either a grain refinement as seen in many metallic systems or in enhanced grain growth as seen in polysilicon. In either case these microstructural and compositional changes are controllable in a way that may allow fabrication of unique devices.